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We study the randomized solution of initial value problems for systems of
ordinary differential equations

y′(x) = f(x, y(x)), x ∈ [a, b], y(a) = y0 ∈ Rd.

Recently S. Heinrich and B. Milla presented an order optimal randomized
algorithm solving this problem for γ-smooth input data (i.e. γ = r + ρ:
the r-th derivatives of f satisfy a ρ-Hölder condition). This algorithm uses
function values and values of derivatives of f . In this paper we present
an order optimal randomized algorithm for the class of γ-smooth functions
that uses only values of f . For this purpose we show how to obtain an order
optimal randomized algorithm from an order (sub)optimal deterministic one.

1 Introduction

We consider algorithms for initial value problems for systems of ordinary differential
equations

y′(x) = f(x, y(x)) (x ∈ [a, b]), (1)

y(a) = y0, (2)
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where y0 ∈ Rd, −∞ < a < b <∞, f : [a, b]× Rd → Rd.
In particular we are interested in determining the optimal order of randomized algo-
rithms, which solve (1)− (2) for specific classes of information.

In the deterministic case the problem was studied in the framework of information
based complexity (IBC) by Kacewicz in [4]. In his work he provided an order optimal
algorithm for the deterministic setting. Later he considered the randomized case in [5]
and presented an almost optimal algorithm for the problem. That means, he reaches
the optimal order only up to an arbitrarily small ε > 0. Heinrich and Milla introduced
a new algorithm for the randomized setting and proved its optimal order in [1]. Both,
the algorithm of Kacewicz and the algorithm of Heinrich and Milla are based on Taylor
approximation. Thus these algorithms need knowledge about the derivatives of f .

In this paper we present a generalized approach for the considered problem class. We
will show that we obtain the same order of convergence, utilizing a smaller class of in-
formation. For this purpose we start with a family of deterministic algorithms. Based
on these algorithms we develop a randomized algorithm using polynomial interpolation
and prove its optimal order using results and methods from [1]. By choosing a suitable
family of deterministic algorithms that use only values of f , we obtain a randomized
method which uses only values of f , as well. Furthermore, if we choose the samples of
the randomized algorithm in a deterministic way, we obtain an order optimal determin-
istic algorithm using only values of f , too.

The paper is structured as follows: In Section 2 we define the considered initial value
problems and present the basic notions of the IBC framework associated with the prob-
lem. In the third section we define the conditions for the family of deterministic al-
gorithms and the randomized algorithm itself. The fourth section is dedicated to the
analysis of the algorithm and numerical results for the new algorithm will be provided
in Section 5.

2 Preliminaries

We start with defining the IBC framework and introduce some necessary definitions.

Definition 1. Let r ∈ N0 := {0, 1, . . .}, ρ ∈ [0, 1], d ∈ N := {1, 2, . . .}, κ,L > 0,−∞ <
a < b <∞. Then we denote by Cr,ρd (a, b, κ, L) the set of functions f : [a, b]× Rd → Rd,
satisfying

Dαf(x, z) continuous (|α| ≤ r), (3)

|Dαf(x, z)| ≤ κ (|α| ≤ r), (4)

|Drf(x, z)−Drf(t, v)| ≤ κ(|x− t|ρ + |z − v|ρ), (5)

|f(x, z)− f(x, v)| ≤ L|z − v|, (6)

2



where x, t ∈ [a, b], z, v ∈ Rd and for α = (α0, . . . , αd) ∈ Nd+1
0 , |α| = α0 + . . .+ αd and

Dαf(x, z) :=
∂|α|f(x, z)

∂xα0∂zα1
1 · · · ∂z

αd
d

.

| · | denotes the Euclidean norm on Rd. Statement (5) says, that the r-th derivatives of
f satisfy a ρ-Hölder condition and (6) states the Lipschitz continuity of f in the second
argument.

An initial value problem (1)− (2) is given by the right-hand function f and the initial
value y0. Therefore we define the set of problem instances as follows. Fix σ > 0 and put

F = {(f, y0) : f ∈ Cr,ρd (a, b, κ, L), y0 ∈ Rd, |y0| ≤ σ}. (7)

Because of condition (6) there exists a unique solution y for the initial value problem
(1)− (2) given by (f, y0) ∈ F , thus we define the solution operator S as

S : F −→ G ,

(f, y0) 7−→ y,

where
G = B([a, b],Rd)

is the linear space of bounded functions g : [a, b]→ Rd, equipped with the norm ||g||∞ =
supx∈[a,b] |g(x)|.

In the framework of IBC, we have to specify the information the algorithm is allowed to
use for calculating an approximate solution. In our case we define two sets of information
functionals:

Λ̄st = {δαi,s : 1 ≤ i ≤ d, s ∈ [a, b]× Rd, α ∈ Nd+1
0 , |α| ≤ r} ∪ {δi : 1 ≤ i ≤ d},

Λst = {δi,s : 1 ≤ i ≤ d, s ∈ [a, b]× Rd} ∪ {δi : 1 ≤ i ≤ d},

where

δαi,s(f, y0) = Dαfi(s), δi,s(f, y0) = fi(s), δi(f, y0) = y0,i.

The index i indicates the i-th component of f and y0. If an algorithm is allowed to
do information calls with respect to Λ̄st, we are allowed to use evaluations of f and
evaluations of derivatives of f . In the case of Λst we are only allowed to evaluate f .
Thus Λst is a proper subset of Λ̄st.

We are especially interested in the so called m-th minimal error of an algorithm.
To specify this error we have to define the different kinds of algorithms, being feasible
for solving numerical problems. In our case the class of randomized algorithms is of
particular interest. A randomized algorithm A is a family of deterministic algorithms
Aω : F → G depending on a randomized parameter ω ∈ Ω of the associated probability
space (Ω,Σ,P). In our case a deterministic algorithm takes as input an initial value
problem defined by (f, y0) and calculates an approximate solution ȳ(x) to the exact
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solution y(x) for x ∈ [a, b]. For the calculation, the algorithm is allowed to do information
calls as defined above in an adaptive way. Adaptive means that the algorithm uses
knowledge of previous information calls to decide which information call he uses next.
For a non-adaptive algorithm the information calls are fixed before calculation. The
randomized method we will define in the next section is an example of an adaptive
algorithm.

In the case where the set Ω has only one single element the family Aω describes a
deterministic algorithm. Therefore we consider a deterministic algorithm as a special
case of a randomized algorithm. To distinguish deterministic and randomized algorithms
we use the superscripts ”det” and ”ran”.

The error of a randomized algorithm A with respect to S ,F , is defined as

e(S , A,F ) = sup
(f,y0)∈F

(
E ||S (f, y0)−Aω(f, y0)||2∞

)1/2
.

Then we define the m-th minimal error as

eranm (S ,F ,Λ) = inf
card(A,F )≤m

e(S ,A,F ),

where card(A,F ) describes the average number of information functionals that A needs
for the calculation and Λ is the admissible information for A. Formal definitions and
more details on these notions can be found in [1],[2],[3] as well as in the monographs [8]
and [9].

Based on these definitions we give a short survey of important results for the considered
problem. In [4], B. Kacewicz proved

c1m
−r−ρ ≤ edetm (S, F, Λ̄st) ≤ c2m−r−ρ.

Later he considered the randomized case and showed in [5] for every ε > 0:

c3m
−r−ρ−1/2 ≤ eranm (S, F, Λ̄st) ≤ c4m−r−ρ−1/2+ε.

Recently Heinrich and Milla presented an order optimal algorithm for the problem and
proved in [1] that

c5m
−r−ρ−1/2 ≤ eranm (S, F, Λ̄st) ≤ c6m−r−ρ−1/2.

Here and below we use the symbols c, c0, c1, etc. to denote positive real valued con-
stants not depending on m,n, k, (f, y0) ∈ F . If the specific value of the constant is not
important, the same symbol may be used for different values.

In the next sections we consider the m-th minimal error in the deterministic and in
the randomized case and we will show that the same orders hold even for the weaker
information class Λst. To prove this we introduce a randomized algorithm in the next
section and show its optimal order in Section 4.
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3 The Algorithm

We define a randomized algorithm based on a certain family of deterministic algorithms:

For n ∈ N let h = (b − a)/n and for k ∈ {0, 1, . . . , n} we set xk = a + kh. Let
0 ≤ θ ≤ r + ρ + 1 and (Dn,k)n∈N,k∈{0,...,n−1} be an arbitrary family of deterministic

algorithms Dn,k : Cr,ρd (a, b, κ, L)×Rd → B([xk, xk+1],Rd) having the property that there
exists a constant c > 0 such that for all n ∈ N, k ∈ {0, . . . , n− 1}, f ∈ Cr,ρd (a, b, κ,L) and
v0 ∈ Rd :

||v −Dn,k(f, v0)||B([xk,xk+1],Rd) ≤ chθ, (8)

where v is the solution of

v′(x) = f(x, v(x)) (x ∈ [xk, xk+1]), (9)

v(xk) = v0. (10)

Put Dn = (Dn,k)n−1k=0 . Based on such a family of deterministic (local) algorithms we
continue by defining a randomized algorithm ADn for the global solution.

Let n ≥ 2 and (f, y0) ∈ F . We calculate vectors yk+1 ∈ Rd (k = 0, . . . , n − 2) and
Rd-valued polynomials pk (k = 0, . . . , n− 1) inductively, beginning with k = 0. Let uk
be the solution of the k-th local initial value problem

u′k(x) = f(x, uk(x)) (x ∈ [xk, xk+1]), (11)

uk(xk) = yk. (12)

We calculate approximate values to uk by

uk,i := Dn,k(f, yk)(xk,i) ≈ uk(xk,i), (13)

where xk,i := xk + i
rh, i ∈ {0, 1, . . . , r}. Then we obtain an approximation to u′k by the

interpolation polynomial qk of degree at most r satisfying

qk(xk,i) = f(xk,i, uk,i) (i = 0, 1, . . . , r). (14)

Integrating qk yields an approximation pk of uk by choosing pk(xk) = yk. If k = n− 1,
we stop here. If k < n− 1, we let ξk+1 be uniformly distributed in [xk, xk+1]. Then we
calculate

yk+1 = pk(xk+1) + h(f(ξk+1, pk(ξk+1))− p′k(ξk+1)). (15)
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The output of the algorithm is the following function ȳ ∈ B([a, b],Rd) :

ȳ(x) =

{
pk(x) if x ∈ [xk, xk+1) and 0 ≤ k < n− 1,

pn−1(x) if x ∈ [xn−1, xn].
(16)

Thus we put ADn(f, y0) = ȳ.

Remark. We explain (15) in the definition of the randomized algorithm. We have

y(xk+1) = y(xk) +

∫ xk+1

xk

f(t, y(t)) dt. (17)

Since y(xk) and y(t) are not known itself we use the approximation pk. Therefore we
conclude

y(xk+1) ≈ yk +

∫ xk+1

xk

f(t, pk(t)) dt. (18)

To calculate an approximation of the integral we use Monte-Carlo Integration with sep-
aration of the main part as in [1]. As a control variate we choose p′k(x). Thus

yk +

∫ xk+1

xk

f(t, pk(t)) dt = yk +

∫ xk+1

xk

p′k(t) dt+

∫ xk+1

xk

(f(t, pk(t))− p′k(t)) dt

≈ pk(xk+1) + h(f(ξk+1, pk(ξk+1))− p′k(ξk+1)).

4 Analysis

Our aim in this section is to prove the optimal order of the algorithm defined in Section
3 for admissible information Λst in the deterministic and in the randomized case.

For analyzing our algorithm we need an estimate for the interpolation error of r-times
continuously differentiable functions whose r-th derivative satisfies a ρ-Hölder condition.

Lemma 2. Let r ∈ N0, ρ ∈ [0, 1], κ1 ∈ R. Then there are constants c1, c2 > 0 such that
for all a1, b1 ∈ R with −∞ < a1 < b1 <∞ and for all g ∈ Cr([a1, b1]) satisfying

|g(r)(x)− g(r)(t)| ≤ κ1|x− t|ρ (x, t ∈ [a1, b1]), (19)

the following holds: Let p be the interpolation polynomial of degree at most r with

p(ti) = g(ti), ti = a1 +
i

r
(b1 − a1) (i = 0, 1, . . . , r),

then
sup

x∈[a1,b1]
|g(x)− p(x)| ≤ c1(b1 − a1)r+ρ. (20)

Moreover, for any polynomial q of degree at most r:

sup
x∈[a1,b1]

|g(x)− q(x)| ≤ c1(b1 − a1)r+ρ + c2 max
0≤i≤r

|g(ti)− q(ti)|. (21)
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This is a well-known result. However, since our formulation involves estimates with
constants independent of the interval limits a1, b1, we include the short and elementary
proof for the sake of completeness.

Proof. For a function f ∈ C([a1, b1]) let

(Pf)(t) =
r∑
i=0

f(ti)li(t)

be the interpolating polynomial, where

li(t) =

{∏r
j=0,j 6=i

t−ti
ti−tj r ≥ 1

1 r = 0

are the Lagrange polynomials. We have

sup
t∈[a1,b1]

|li(t)| ≤ c (22)

with a constant c independent of a1, b1. Furthermore, by Taylor’s formula, for r ≥ 1,

g(x) =

r∑
i=0

(x− a1)i

i!
g(i)(a1) +

∫ x

a1

(x− t)r−1

(r − 1)!
(g(r)(t)− g(r)(a1)) dt. (23)

Then (22), (23) and (19) imply (20) in the case r ≥ 1. If r = 0, (20) follows directly
from (19). Moreover, we have

sup
x∈[a1,b1]

|g(x)− q(x)| ≤ sup
x∈[a1,b1]

|g(x)− (Pg)(x)|+ sup
x∈[a1,b1]

|(P (g − q))(x)|,

which combined with (20) and (22) gives (21).

The values, used for interpolation in the randomized algorithm, contain errors. Thus
we show, using the second part of Lemma 2, that the uncertainty does not affect the
error rate of the interpolation.

Lemma 3. There are constants c1, c2 > 0 such that for all n ∈ N,
k ∈ {0, . . . , n− 1}, f ∈ Cr,ρd (a, b, κ, L), v0 ∈ Rd the solution v of the initial value problem
(9)− (10) satisfies

|v(j)(x)| ≤ c1 (x ∈ [xk, xk+1] ∧ j ∈ {1, . . . , r + 1}), (24)

|v(r+1)(x)− v(r+1)(t)| ≤ c2|x− t|ρ (x, t ∈ [xk, xk+1]). (25)

This is well-known. For a proof see e.g. [1].
Next we show the existence of a family of deterministic algorithms satisfying condition

(8) for θ = r + ρ+ 1.
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Proposition 4. There exists a family of deterministic algorithms
(
D0
n,k

)
n∈N,k∈{0,...,n−1}

,

D0
n,k : Cr,ρd (a, b, κ, L) × Rd → B([xk, xk+1],Rd) and a constant c > 0 such that for all

n ∈ N,
k ∈ {0, . . . , n − 1}, f ∈ Cr,ρd (a, b, κ,L), v0 ∈ Rd the algorithm D0

n,k uses not more than

d[(r + 1)(r + 2)/2 + 1] information functionals from Λst and satisfies

||v −D0
n,k(f, v0)||B([xk,xk+1],Rd) ≤ chr+ρ+1, (26)

with v defined by (9)− (10).

Proof. We define an algorithm satisfying the claimed properties.
Algorithm: Let n ∈ N, k ∈ {0, 1, . . . , n− 1}, f ∈ Cr,ρd (a, b, κ,L), v0 ∈ Rd.

Step 0: Put

p̄0(x) := v0 + (x− xk)f(xk, v0). (27)

If r = 0 we stop and set D0
n,k(f, v0) := p̄0. Else define p̄l+1 inductively for l ∈

{0, 1, . . . , r − 1}:

Step l + 1: Let xl+1,i := xk + i
l+1h for i ∈ {0, 1, . . . , l + 1} and let q̄l+1(x) be the Rd-

valued interpolation polynomial of degree ≤ l + 1 satisfying

q̄l+1(xl+1,i) = f(xl+1,i, p̄l(xl+1,i)) (i = 0, 1, . . . , l + 1). (28)

Then we set

p̄l+1(x) := v0 +

∫ x

xk

q̄l+1(t) dt. (29)

Finally D0
n,k(f, v0) := p̄r.

Now we show that there is a constant c > 0 such that for all n, k, f, v0 and l ∈
{0, 1, . . . , r} :

sup
x∈[xk,xk+1]

|v(x)− p̄l(x)| ≤ chl+ρ+1. (30)
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We argue by induction: For l = 0 we conclude with (9), (5), (6) and (24):

sup
x∈[xk,xk+1]

|v(x)− p̄0(x)| = sup
x∈[xk,xk+1]

∣∣∣∣v0 +

∫ x

xk

v′(t) dt− v0 −
∫ x

xk

f(xk, v0) dt

∣∣∣∣
≤ h sup

x∈[xk,xk+1]
|f(x, v(x))− f(xk, v0)|

≤ h sup
x∈[xk,xk+1]

(|f(x, v(x))− f(x, v0)|+ |f(x, v0)− f(xk, v0)|)

≤ h sup
x∈[xk,xk+1]

(L|v(x)− v0|+ κ|x− xk|ρ)

≤ h sup
x∈[xk,xk+1]

(
L

∣∣∣∣∫ x

xk

v′(x)

∣∣∣∣+ κh ρ
)

≤ κLh2 + κh ρ+1 ≤ ch ρ+1.

Let l ∈ {0, 1, . . . , r − 1}. In step l + 1 we conclude with (28), Lipschitz continuity of f
and the induction assumption (30), that for 0 ≤ i ≤ l + 1

|v′(xl+1,i)− q̄l+1(xl+1,i)| = |f(xl+1,i, v(xl+1,i))− f(xl+1,i, p̄l(xl+1,i))|
≤ L|v(xl+1,i)− p̄l(xl+1,i)|
≤ chl+ρ+1

and because of (25) and Lemma 2 applied componentwise to g = v′, a1 = xk, b1 = xk+1,
it follows that

sup
x∈[xk,xk+1]

|v′(x)− q̄l+1(x)| ≤ c1hl+ρ+1 + c2 max
0≤i≤l+1

|v′(xl+1,i)− q̄l+1(xl+1,i)| ≤ chl+ρ+1.

Integration yields

sup
x∈[xk,xk+1]

|v(x)− p̄l+1(x)| ≤ sup
x∈[xk,xk+1]

∫ x

xk

|v′(t)− q̄l+1(t)| dt

≤ chl+ρ+2,

which proves (30). The algorithm uses the following information functionals from Λst:
the d components of v0 and d(r + 1)(r + 2)/2 function values of f .

Lemma 5. There are constants c3, c4 > 0 such that for all (f, y0) ∈ F , n ∈ N, n ≥ 2, k ∈
{0, . . . , n− 1} the following holds:

|yk| ≤ c3 and

|uk(x)| ≤ c4 (x ∈ [xk, xk+1]),

where uk and yk were defined in (11)− (12) and (15).
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Proof. According to (13) we calculate uk,i using Dn,k in every step k. For every i ∈
{0, 1, . . . , r} we calculate

f(xk,i, uk,i)

and obtain with condition (4)
|f(xk,i, uk,i)| ≤ κ. (31)

We conclude using Lagrangian polynomials

sup
x∈[xk,xk+1]

|p′k(x)| ≤ c. (32)

The algorithm calculates in every step k

yk+1 = yk +

∫ xk+1

xk

p′k(t) dt+ h(f(ξk+1, pk(ξk+1))− p′k(ξk+1)),

hence with (4) and (32)

|yk+1 − yk| ≤ h|p′k(x)|+ h|(f(ξk+1, pk(ξk+1))− p′k(ξk+1))|
≤ ch

and because of (7) we conclude

max
i∈{0,...,n−1}

|yi| ≤ |y0|+ n max
i∈{0,...,n−1}

|yi+1 − yi| ≤ c.

Since |uk(x)| = |yk +
∫ x
xk
u′k(t) dt| and by (4) and (11), |u′k(x)| ≤ c for x ∈ [xk, xk+1], the

second statement follows.

Proposition 6. Let 0 ≤ θ ≤ r + ρ + 1 and let (Dn,k)n∈N,k∈{0,...,n−1} be any family as
described before (see (8) and above). Then there is a constant c > 0 such that for all
(f, y0) ∈ F , n ∈ N, n ≥ 2 the error of the randomized algorithm satisfies√

E||S(f, y0)−ADn(f, y0)||2∞ ≤ chmin(r+ρ,θ)+1/2.

Proof. Let n ∈ N, n ≥ 2, k ∈ {0, 1, . . . , n− 1}. By (8) and (13) we have

|uk(xk,i)− uk,i| ≤ chθ,

which together with (14) and (6) gives

|u′k(xk,i)− qk(xk,i)| = |f(xk,i, uk(xk,i))− f(xk,i, uk,i)| ≤ chθ.

By (25) of Lemma 3 we have

|u(r+1)
k (x)− u(r+1)

k (t)| ≤ c|x− t|ρ (x, t ∈ [xk, xk+1]).
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Therefore we can apply Lemma 2 with g = u′k, a1 = xk, b1 = xk+1 and get

sup
x∈[xk,xk+1]

|u′k(x)− qk(x)| ≤ c1hr+ρ + c2 max
0≤i≤r

|u′k(xk,i)− qk(xk,i)| ≤ chmin(r+ρ,θ).

By the definition of pk, this gives

sup
x∈[xk,xk+1]

|u′k(x)− p′k(x)| ≤ chmin(r+ρ,θ). (33)

Exploiting pk(xk) = uk(xk) = yk yields

µk := sup
x∈[xk,xk+1]

|uk(x)− pk(x)|

= sup
x∈[xk,xk+1]

∣∣∣∣∫ x

xk

u′k(t) dt−
∫ x

xk

p′k(t) dt

∣∣∣∣
≤ chmin(r+ρ,θ)+1. (34)

Since (34) and (33) correspond to (23) and (25) of [1], the rest of the proof of Proposition
1 in [1] goes through literally, replacing γ by min(r+ρ, θ). We do not repeat it here.

Theorem 7. Let r ∈ N0, ρ ∈ [0, 1], γ = r + ρ and S ,F ,Λst be as in Section 2. Then
there are constants c1, c2, c3, c4 > 0 such that for every m ∈ N :

c1m
−γ−1/2 ≤ eranm (S ,F ,Λst) ≤ c2m

−γ−1/2,

c3m
−γ ≤ edetm (S ,F ,Λst) ≤ c4m

−γ ,

holds.

Proof. Let C = d((r + 2)(r + 3)/2 + 1). For any m ∈ N with m ≥ 2C we put

n =
⌊m
C

⌋
≥ 2

and apply the randomized algorithm AD0
n
. This algorithm uses not more than

d

(
1 +

(r + 1)(r + 2)

2
+ r + 2

)
n = d

(
(r + 2)(r + 3)

2
+ 1

)
n = Cn ≤ m

information functionals (see Proposition 4 and relations (14) and (15)). Together with
Proposition 6, this implies

eranm (S ,F ,Λst) ≤ cn−r−ρ−1/2 ≤ c1m−r−ρ−1/2 (m ≥ 2C).

For m < 2C we use the zero algorithm just giving zero for all algorithm calls. By
assumption |y0| ≤ σ, thus ||y||∞ ≤ σ + (b− a)κ and therefore ||y − 0||∞ ≤ σ + (b− a)κ.
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For the deterministic case we note that each realization of the randomized algorithm
(that is, ω ∈ Ω is fixed, meaning any realizations of ξ1, . . . , ξn are fixed) is a deterministic
algorithm with optimal deterministic error. Indeed, we use the same argument as above,
except that we need one modification in the proof of Proposition 6, or more precisely in
the part contained in [1]: We estimate the middle term of the last line of (40) in [1] by

max
1≤j≤n−1

∣∣∣∣∣
j∑
i=1

ηi

∣∣∣∣∣ ≤
n−1∑
i=1

|ηi| ≤ chr+ρ

and obtain
||y − ȳ||∞ ≤ chr+ρ. (35)

A similar observation was made in [1]. The lower bounds are immediate consequences
of the results from [1] and [4], since Λst ⊂ Λ̄st.

Remark on the sampling region. Note that AD0
n

samples the function f only in
a neighborhood of the true solution. Let us make this more precise. First, there is a
constant c > 0 such that the algorithm D0

n,k uses function values of f only in points

(t, z) ∈ [xk, xk+1]× Rd with the property

|v0 − z| ≤ ch.

This follows from (9) − (10) and (27) − (30) . Based on this and (32) it follows that
the resulting randomized algorithm samples f for all k ∈ {0, . . . , n − 1} only in points
(t, z) ∈ [xk, xk+1]× Rd with

|pk(t)− z| ≤ |pk(t)− pk(xk)︸ ︷︷ ︸
yk

|+ |yk − z| ≤ ch,

which by (35) implies for all sample points (t, z) ∈ [a, b]× Rd

|y(t)− z| ≤ |y(t)− ȳ(t)|+ |ȳ(t)− z| ≤ chmin(r+ρ,1). (36)

For the case r + ρ = 0 we use Proposition 2 of [1], which carries over to the situation of
our paper and asserts that there are constants c̃1, c̃2 > 0 such that for all τ ≥ c̃1 and all
(f, y0) ∈ F

P
{
||S(f, y0)−AD0

n
(f, y0)||∞ ≥ τn−1/2

}
= P

{
||y − ȳ||∞ ≥ τn−1/2

}
≤ exp(−c̃2τ2).

Thus, for r + ρ = 0 and any τ ≥ c̃1 the algorithm samples f with probability ≥ 1 −
exp (−c̃2τ2) only in points (t, z) ∈ [a, b]× Rd with

|y(t)− z| ≤ c̃3n−1 + τn−1/2. (37)

Remark on scalar equations of higher order. Let r ∈ N0, ρ ∈ [0, 1], ` ∈ N, κ,L >
0,−∞ < a < b < ∞. Then we denote by Ĉr,ρ` (a, b, κ, L) the set of functions f :
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[a, b]× R` → R satisfying

Dαf(x, z) continuous (|α| ≤ r),
|Dαf(x, z)| ≤ κ (|α| ≤ r),

|Drf(x, z)−Drf(t, v)| ≤ κ(|x− t|ρ + |z − v|ρ),
|f(x, z)− f(x, v)| ≤ L|z − v|,

for x, t ∈ [a, b], z, v ∈ R`. Let σ > 0 be fixed, f ∈ Ĉr,ρ` (a, b, κ,L) and w0 = (wi,0)
`−1
i=0 ∈ R`

with |w0| ≤ σ, then

w(`)(x) = f(x,w(x), w′(x), . . . , w(`−1)(x)), (38)

w(a) = w0,0, w
′(a) = w1,0, . . . , w

(`−1)(a) = w`−1,0, (39)

defines an ordinary differential equation of order `. The complexity of such equations
was considered before in [6] and [7]. In [7] the order of the m-th minimal error for the
randomized setting with Λ̄st was determined up to a gap of an arbitrarily small ε > 0 in
the exponent of m. As an immediate consequence of our results we can close this gap
and give the sharp order of the m-th minimal error both for Λ̄st and Λst.

We reduce problem (38) − (39) to a system in the standard way. Let y0(x) :=
w(x), y1(x) := w′(x), . . . , y`−1(x) = w(`−1)(x), then

y′0(x) = y1(x), y0(a) = w0,0,

y′1(x) = y2(x), y1(a) = w1,0,

...
... (40)

y′`−2(x) = y`−1(x), y`−2(a) = w`−2,0,

y′`−1(x) = f(x, y0(x), . . . , y`−1(x)), y`−1(a) = w`−1,0,

defines an equivalent system of ordinary differential equations of order 1 and dimension `.
We denote the right-hand side function of system (40) by f sys, that is, f sys : [a, b]×R` →
R`,

f sys(x, z0, z1, . . . , z`−1) =


z1
z2
...

z`−1
f(x, z0, z1, . . . , z`−1)

 .

For this system we cannot apply Theorem 7 directly, since f sys does not satisfy condition
(4) for α = 0. But by (38)

|w(`)(x)| = |f(x,w(x), . . . , w(`−1)(x))| ≤ κ (x ∈ [a, b]),
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which together with |w0| ≤ σ and (39) gives

|yi(x)| = |w(i)(x)| ≤ c0 (x ∈ [a, b], i = `− 1, . . . , 0) (41)

for some c0 > 0. Let ψ ∈ Cr+1(R) be such that ψ(t) = t for |t| ≤ 2c0 and ψ(t) = 0 for
|t| ≥ 3c0. Define gsys : [a, b]× R` → R`, by

gsys(x, z0, . . . , z`−1) =


ψ(z1)
ψ(z2)

...
ψ(z`−1)

f(x, z0, . . . , z`−1)

 .

Since ψ ∈ Cr+1(R), there are constants κ1,L1 > 0 such that for all f ∈ Ĉr,ρ` (a, b, κ,L)

we have gsys ∈ Cr,ρ` (a, b, κ1,L1). It follows from (41) that the solution y(x) = (yi(x))`−1i=0

of system (40) satisfies

y′(x) = f sys(x, y(x)) = gsys(x, y(x)) (x ∈ [a, b]), (42)

y(a) = w0.

Thus we can apply the randomized algorithm from above to gsys and obtain the same
convergence as in Theorem 7 for ordinary differential equations of order `. The corre-
sponding lower bound is contained in [7].

Note that the resulting order-optimal randomized algorithm formally depends on the
choice of ψ and thus, on the smoothness constants of the class. In the sequel we show
that this can be avoided. By (36) there is a constant c1 > 0 such that AD0

n
samples gsys

only in points (t, z) ∈ [a, b]× R` with

|yi(t)− zi| ≤ c1n−min(r+ρ,1) (i = 0, . . . , `− 1).

Thus, for r + ρ > 0 and

n ≥
(
c1
c0

)min(r+ρ,1)−1

we have |zi| ≤ 2c0, hence ψ(zi) = zi (i = 0, . . . , z`−1) and therefore

gsys(t, z0, . . . , z`−1) = f sys(t, z0, . . . , z`−1).

This implies that the algorithm, if applied to f sys, produces the same result as if applied
to gsys. Consequently, we obtain the same convergence rate as in Theorem 7 for the
algorithm applied to f sys directly.
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If r + ρ = 0, we use (37) and obtain for

n ≥ max

{
2
c̃3
c0
, 4

(
c̃1
c0

)2
}
, τ =

c0n
1/2

2
,

that with probability

≥ 1− exp

(
− c̃2c

2
0n

4

)
all sampling points satisfy |y(t) − z| ≤ c0. Arguing as above, it follows that the rate of
Theorem 7 holds with high probability for the algorithm applied to f sys directly.

5 Numerical Results

In this section we present some numerical results. In the first two examples we compare
our algorithm based on a 3-stage Runge-Kutta method with the 3-stage Runge-Kutta
method itself for different test functions f . The maximum of all errors in the sample
points of the interval [a, b] will be displayed in the right-hand graph of the figures.

In Figure 1 we present the error for f(x, y) := g(x)y2, where g ∈ C1(R) as shown in
the left graph of the figure. For this example we observe a gain, with respect to the
convergence of the error, by the randomized method.

0.5 1.0 1.5 2.0 2.5 3.0

1

2

3

4

5

g(x) :=

{
1 if x < 1

(x − 1)2 + 1 if x ≥ 1

Figure 1: Plot of the error for f(x, y) = g(x)y2 in log scale for the y-axis

For another example we chose a more complicated test function g, the highly oscillatory
function g(x) := sin (100x). In Figure 2 we see, that the gain is even bigger than in the
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first example.

g(x) := sin(100x)

Figure 2: Plot of the error for f(x, y) = g(x)y2 in log scale for the y-axis

For a last example we chose a piecewise constant function as g. Here we compared
the randomized method based on the Euler method with the Euler method itself. Our
results shown in Figure 3 confirm that in particular for functions f with low degree of
smoothness a randomized method can be better than a deterministic one.
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g(x) piecewise constant

Figure 3: Plot of the error for f(x, y) = g(x)y2 in log scale for the y-axis
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