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Abstract

We study the randomized n-th minimal errors (and hence the complexity) of vector
valued mean computation, which is the discrete version of parametric integration. The
results of the present paper form the basis for the complexity analysis of parametric in-
tegration in Sobolev spaces, which will be presented in Part 2. Altogether this extends
previous results of Heinrich and Sindambiwe (J. Complexity, 15 (1999), 317–341) and Wie-
gand (Shaker Verlag, 2006). Moreover, a basic problem of Information-Based Complexity
on the power of adaption for linear problems in the randomized setting is solved.

1 Introduction

Let M,M1,M2 be finite sets and let 1 ≤ p, q ≤ ∞. We define the space LMp as the set of all
functions f : M → K with the norm

‖f‖LM
p

=


(

1

|M |
∑
i∈M

|f(i)|p
)1/p

if p <∞

max
i∈M
|f(i)| if p =∞.

In the present paper we study the complexity of vector-valued mean computation in the ran-
domized setting. More precisely, we determine the order of the randomized n-th minimal errors
of

SM1,M2 : LM1×M2
p → LM1

q (1)

with

(SM1,M2f)(i) =
1

|M2|
∑
j∈M2

f(i, j). (2)

The input set is the unit ball of LM1×M2
p and information is standard (values of f). SM1,M2 can

also be viewed as discrete parametric integration. For p = q =∞ such an analysis is essentially
contained in [11] and for 1 ≤ p = q <∞ in [25].

The case p 6= q requires some new techniques. Moreover, it contains a domain of parameters,
namely 2 < p < q ≤ ∞, where adaptive and non-adaptive randomized n-th minimal errors
deviate by a power of n. Since the problem (2) is linear, this answers a basic question of
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Information-Based Complexity (IBC). Let us give some background on this problem. For a
more detailed account on the problems and results around adaption we refer to [16] and [18],
see also [14] and [20].

The adaption problem in the deterministic setting: It is well-known since the 80ies
that for linear problems adaptive and non-adaptive n-th minimal errors can deviate at most by
a factor of 2, thus for any linear problem P = (F,G, S,K,Λ) (see the definitions below) and
any n ∈ N

edet−non
n (S, F,G) ≤ 2edet

n (S, F,G), (3)

see Gal and Micchelli [2], Traub and Woźniakowski [21]. Partial results in this direction were
shown before by Bakhvalov [1]. Similar results for the average case setting for classes of Gaussian
measures were obtained by Wasilkowski and Woźniakowski [24], see also [22, 23]. Kon and
Novak [12] proved that the factor 2 in relation (3) cannot be replaced by 1.

The adaption problem in the randomized setting: Is there a constant c > 0 such
that for all linear problems P = (F,G, S,K,Λ) and all n ∈ N

eran−non
n (S, F,G) ≤ ceran

n (S, F,G) ?

See the open problem on p. 213 of [16], and Problem 20 on p. 146 of [18]. Let us note that for
some non-linear problems the answer is ’No’: for integration of monotone functions [15] and of
convex functions [17]. (These problems are nonlinear because the input set F is not balanced).

Relations (111) and (112) of Theorem 4.5 show: The answer is ’No’ for linear problems.
The case 2 < p < q of vector-valued mean computation provides a counterexample. The paper
is organized as follows. In Section 2 we recall the basic notions of IBC and present some
auxiliary facts. Moreover, this section contains new general results on the average case setting,
which will be needed for the lower bound estimates in the main result. In Section 3 we recall
one instant of the randomized norm estimation algorithm from [8] which is a central part of the
analysis of the critical domain 2 < p < q. Finally, Section 4 contains the complexity analysis of
vector-valued mean computation and the solution of the above mentioned adaption problem.

2 Preliminaries

Throughout this paper log means log2. We denote N = {1, 2, . . . } and N0 = N ∪ {0}. The
symbol K stands for the scalar field, which is either R or C. We often use the same symbol
c, c1, c2, . . . for possibly different constants, even if they appear in a sequence of relations.
However, some constants are supposed to have the same meaning throughout a proof – these
are denoted by symbols c(1), c(2), . . . . The unit ball of a normed space X is denoted by BX .

We work in the framework of IBC [14, 20], using specifically the general approach from
[4, 5]. An abstract numerical problem P is given as

P = (F,G, S,K,Λ). (4)

Here F is a non-empty set, G a Banach space and S is a mapping F → G. The operator S is
called the solution operator, it sends the input f ∈ F of our problem to the exact solution S(f).
Moreover, Λ is a nonempty set of mappings from F to K, the set of information functionals,
where K is any nonempty set - the set of values of information functionals. A problem P is
called linear, if K = K, F is a convex and balanced subset of a linear space X over K, S is the
restriction to F of a linear operator from X to G, and each λ ∈ Λ is the restriction to F of a
linear mapping from X to K.
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A deterministic algorithm for P is a tuple A = ((Li)
∞
i=1, (τi)

∞
i=0, (ϕi)

∞
i=0) such that L1 ∈ Λ,

τ0 ∈ {0, 1}, ϕ0 ∈ G, and for i ∈ N

Li+1 : Ki → Λ, τi : Ki → {0, 1}, ϕi : Ki → G

are arbitrary mappings, where Ki denotes the i-th Cartesian power of K. Given an input
f ∈ F , we define (λi)

∞
i=1 with λi ∈ Λ as follows:

λ1 = L1, λi = Li(λ1(f), . . . , λi−1(f)) (i ≥ 2).

Define card(A, f), the cardinality of A at input f , to be 0 if τ0 = 1. If τ0 = 0, let card(A, f)
be the first integer n ≥ 1 with τn(λ1(f), . . . , λn(f)) = 1 if there is such an n. If τ0 = 0 and no
such n ∈ N exists, put card(A, f) = +∞. We define the output A(f) of algorithm A at input
f as

A(f) =

{
ϕ0 if card(A, f) ∈ {0,∞}
ϕn(λ1(f), . . . , λn(f)) if 1 ≤ card(A, f) = n <∞.

The cardinality of A is defined by

card(A,F ) = sup
f∈F

card(A, f)

and the error of A in approximating S by

e(S,A, F,G) = sup
f∈F
‖S(f)− A(f)‖G.

Let A det(P) be the set of all deterministic algorithms for P and, given n ∈ N0, let A det
n (P)

be the subset of all those A ∈ A det(P) with with card(A) ≤ n. Then the deterministic n-th
minimal error of S is defined as

edet
n (S, F,G) = inf

A∈A det
n (P)

e(S,A, F,G).

A deterministic algorithm is called non-adaptive, if all Li and τi are constant, in other
words,

Li ∈ Λ (i ∈ N), τi ∈ {0, 1} (i ∈ N0). (5)

The subset of non-adaptive algorithms in A det(P) is denoted by A det−non(P) and the respective
subset in A det

n (P) by A det−non
n (P). Correspondingly, we define the non-adaptive deterministic

n-th minimal error of S by

edet−non
n (S, F,G) = inf

A∈A det−non
n (P)

e(S,A, F,G).

Clearly, we always have

edet
n (S, F,G) ≤ edet−non

n (S, F,G) (n ∈ N0).

Below we will consider problems on product structures. Let P be an abstract numerical
problem (4) and assume that

F = F (1) × F (2), K = K(1) ∪K(2), Λ = Λ(1) ∪ Λ(2),

F (ι) 6= ∅, K(ι) 6= ∅ (ι = 1, 2), Λ(1) 6= ∅, Λ(1) ∩ Λ(2) = ∅,
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such that Λ(1) consists of mappings into K(1), Λ(2) of mappings into K(2), and for all λ ∈ Λ(2)

we have λ(f, g) = λ(f ′, g) (f, f ′ ∈ F (1), g ∈ F (2)), that is, all λ ∈ Λ(2) depend only on g ∈ F (2)

(the λ ∈ Λ(1) may depend on both f and g). For λ ∈ Λ(2) we use both the notation λ(f, g) as
well as λ(g).

Let A = ((Li)
∞
i=1, (τi)

∞
i=0, (ϕi)

∞
i=0) be a deterministic algorithm for P . Given f ∈ F (1) and

g ∈ F (2), let

λ1 = L1, λi = Li(λ1(f, g), . . . , λi−1(f, g)) (i ≥ 2).

Define

cardΛ(1)(A, f, g) = |{k ≤ card(A, f, g) : λk ∈ Λ(1)}|
cardΛ(2)(A, f, g) = |{k ≤ card(A, f, g) : λk ∈ Λ(2)}|.

Clearly, if A is non-adaptive, these quantities do not depend on (f, g). Fix g ∈ F (2). We define
the restricted problem Pg = (F (1), G, Sg, K

(1),Λg) by setting

Sg : F (1) → G, Sg(f) = S(f, g), Λg = {λ( · , g) : λ ∈ Λ(1)}. (6)

To a given a deterministic algorithm A for P and g ∈ F (2) we will associate an algorithm Ag
for the restricted problem Pg. The following result extends Lemma 3 of [7] and Proposition 2.1
in [10].

Lemma 2.1. Let A be a deterministic algorithm for P and let g ∈ F (2). Then there is a
deterministic algorithm Ag for Pg such that for all f ∈ F (1)

Ag(f) = A(f, g) (7)

card(Ag, f) = cardΛ(1)(A, f, g). (8)

Moreover, if A is non-adaptive, Ag can be chosen to be non-adaptive, as well. In this case (8)
turns into

card(Ag) = cardΛ(1)(A). (9)

Except for some minor modifications the proof is the same as that in [10], we therefore only
present the construction of Ag from A.

Sketch of proof of Lemma 2.1.
Let A = ((Li)

∞
i=1, (τi)

∞
i=0, (ϕi)

∞
i=0) and fix g ∈ F (2). Let ν0 ∈ Λ(1) be any element. Given an

arbitrary sequence (yl)
∞
l=1 ∈ (K(1))N, we define two sequences (λi)

∞
i=1 ∈ ΛN and (zi)

∞
i=1 ∈ KN

inductively as follows. Let

λ1 = L1 (10)

z1 =

{
y1 if λ1 ∈ Λ(1)

λ1(g) if λ1 ∈ Λ(2).

Now let i ≥ 1, assume that (λj)j≤i and (zj)j≤i have been defined, let

l = |{j ≤ i : λj ∈ Λ(1)}|,



5

and set

λi+1 = Li+1(z1, . . . , zi) (11)

zi+1 =

{
yl+1 if λi+1 ∈ Λ(1)

λi+1(g) if λi+1 ∈ Λ(2).

Roughly, this is something like the information A produces, when instead of the values λ(f, g)
for λ ∈ Λ(1) the consecutive values yl are inserted. Let k0 = 0 and define for l ∈ N

kl = min{i ∈ N : i > kl−1, λi ∈ Λ(1)}, (12)

(min ∅ :=∞).
Now we define the functions constituting the algorithm Ag = (Ll,g)

∞
l=1, (τl,g)

∞
l=0, (ϕl,g)

∞
l=0) for

finite substrings (y1, . . . , yl) of the given sequence (yl)
∞
l=1. Let l ∈ N0 and set

Ll+1,g(y1, . . . , yl) =

{
λkl+1

( · , g) if kl+1 <∞
ν0( · , g) if kl+1 =∞ (13)

τl,g(y1, . . . , yl) =



0 if kl+1 <∞ and τi(z1, . . . , zi) = 0
for all i with kl ≤ i < kl+1

1 if kl+1 <∞ and τi(z1, . . . , zi) = 1
for some i with kl ≤ i < kl+1

1 if kl+1 =∞

(14)

ϕl,g(y1, . . . , yl) =



ϕkl(z1, . . . , zkl) if kl+1 <∞ and τi(z1, . . . , zi) = 0
for all i with kl ≤ i < kl+1

ϕi(z1, . . . , zi) if i is the smallest idex with kl ≤ i < kl+1

and τi(z1, . . . , zi) = 1

ϕ0 if kl+1 =∞ and τi(z1, . . . , zi) = 0
for all i with kl ≤ i <∞.

Since we defined these functions of finite strings by the help of an infinite string, correctness has
to be checked in the sense that for each l ∈ N and each sequence (ỹj)

∞
j=1 ⊂ K(1) with yj = ỹj

for all j ≤ l the respective values of Ll+1,g, τl,g, and ϕl,g coincide. But this follows readily from
the definitions.

If A is non-adaptive, then by (5), Li ∈ Λ and τi ∈ {0, 1} for all i ∈ N0. Consequently, by
(10) and (11), λi = Li, and moreover, by (12), the sequence (kl)

∞
l=0 does not depend on (yl)

∞
l=0.

Therefore (13) and (14) show that Ll+1,g and τl,g do not depend on y1, . . . , yl, thus Ll+1,g ∈ Λg,
τl,g ∈ {0, 1}, hence Ag is non-adaptive, as well, and (9) follows.

Finally, the inductive verification of (7) and (8) is straightforward, but somewhat technical.
It follows exactly the line of the respective part of the proof of Proposition 2.1 in [10].

A randomized algorithm for P is a tuple A = ((Ω,Σ,P), (Aω)ω∈Ω), where (Ω,Σ,P) is a
probability space and for each ω ∈ Ω, Aω is a deterministic algorithm for P . Let n ∈ N0. Then
A ran
n (P) stands for the class of randomized algorithms A for P with the following properties:

For each f ∈ F the mapping ω → card(Aω, f) is Σ-measurable,

E card(Aω, f) ≤ n,
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and the mapping ω → Aω(f) is Σ-to-Borel measurable and P-almost surely separably valued,
i.e., there is a separable subspace Gf of G such that P{ω : Aω(f) ∈ Gf} = 1. We define the
cardinality of A ∈ A ran

n (P) as

card(A,F ) = sup
f∈F

E card(Aω, f),

the error as
e(S,A, F,G) = sup

f∈F
E ‖S(f)− Aω(f)‖G,

and the randomized n-th minimal error of S as

eran
n (S, F,G) = inf

A∈A ran
n (P)

e(S,A, F,G).

Considering trivial one-point probability spaces Ω = {ω} immediately yields

eran
n (S, F,G) ≤ edet

n (S, F,G). (15)

Similarly to the deterministic case we call a randomized algorithm ((Ω,Σ,P), (Aω)ω∈Ω) non-
adaptive, if Aω is non-adaptive for all ω ∈ Ω. Furthermore, A ran−non

n (P) is the subset of
non-adaptive algorithms in A ran

n (P). The non-adaptive randomized n-th minimal error of S is
given by

eran−non
n (S, F,G) = inf

A∈A ran−non
n (P)

e(S,A, F,G).

Then it holds
eran
n (S, F,G) ≤ eran−non

n (S, F,G) (n ∈ N0). (16)

Moreover, in analogy to (15) we have

eran−non
n (S, F,G) ≤ edet−non

n (S, F,G).

We also need the average case setting. For the purposes of this paper we consider it only
for measures which are supported by a finite subset of F . Then the underlying σ-algebra is
assumed to be 2F , therefore no measurability conditions have to be imposed on S and the
involved deterministic algorithms. So let µ be a probability measure on F with finite support.
Put

card(A, µ) =

∫
F

card(A, f)dµ(f),

e(S,A, µ,G) =

∫
F

‖S(f)− A(f)‖Gdµ(f),

eavg
n (S, µ,G) = inf

A∈A det(P): card(A,µ)≤n
e(S,A, µ,G),

eavg−non
n (S, µ,G) = inf

A∈A det−non(P): card(A,µ)≤n
e(S,A, µ,G).

Similarly to (16) we have

eavg
n (S, µ,G) ≤ eavg−non

n (S, µ,G) (n ∈ N0). (17)

We use the following well-known results to prove lower bounds.
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Lemma 2.2. For every probability measure µ on F of finite support we have

eran
n (S, F,G) ≥ 1

2
eavg

2n (S, µ,G)

eran−non
n (S, F,G) ≥ 1

2
eavg−non

2n (S, µ,G).

Next we prove two general lemmas on the average case. They concern product structures.
Let M ∈ N and let for i = 1, . . . ,M , Pi = (Fi, Gi, Si, Ki,Λi) be a numerical problem and µi a
probability measure on Fi whose support is a finite set. We assume that for each i none of the
elements of Λi is constant on Fi, that is,

for all λ ∈ Λi there exist f1, f2 ∈ Fi with λ(f1) 6= λ(f2). (18)

Let 1 ≤ q ≤ ∞ and let LMq (G1, . . . , GM) be the space of tuples (gi)
M
i=1 with gi ∈ Gi, endowed

with the norm
∥∥(‖gi‖)Mi=1

∥∥
LM
q

. The coordinate projection of G onto Gi is denoted by Pi. We

define the product problem P = (F,G, S,K,Λ) by

F =
M∏
i=1

Fi, G = LMq (G1, . . . , GM), K =
M⋃
i=

Ki, (19)

S = (S1, . . . , SM) : F → G, S(f1, . . . , fM) = (S1(f1), . . . , SM(fM)), (20)

furthermore, let

Φi : Λi → F (F,K), (Φi(λi))(f1, . . . , fi, . . . , fM) = λi(fi), (21)

and set
Λ = ∪Mi=1Φi(Λi). (22)

Note that (18) implies
Φi(Λi) ∩ Φj(Λj) = ∅ (i 6= j). (23)

For 1 ≤ i ≤M we put

F ′i =
∏

1≤j≤M,j 6=i

Fj, (24)

If i is fixed, we identify, for convenience of notation,

F with Fi × F ′i , f = (f1, . . . , fi, . . . , fM) ∈ F with f = (fi, f
′
i), (25)

where
f ′i = (f1, . . . , fi−1, fi+1, . . . , fM) ∈ F ′i . (26)

For the following lemma we define

µ =
M∏
i=1

µi, µ′i =
∏

1≤j≤M,j 6=i

µj. (27)

Lemma 2.3. With the notation above, under assumption (18), we have for each n ∈ N0

eavg
n (S, µ,G) ≥ 1

2
inf

{∥∥(eavg
d2nie(Si, µi, Gi))

M
i=1

∥∥
LM
q

: ni ∈ R, ni ≥ 0,
M∑
i=1

ni ≤ n

}
. (28)
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Proof. Let A = ((Lk)
∞
k=1, (τk)

∞
k=0, (ϕk)

∞
k=0) be a deterministic algorithm for P with card(A, µ) ≤

n. Let ni(f) be the number of information functionals in Φi(Λi) called by A at input f . Setting
ni = Eµni(f), we have

M∑
i=1

ni ≤ n. (29)

Now we use Lemma 2.1 for the problem

P(i) = (F,Gi, PiS,K,Λ) (30)

and algorithm
PiA := ((Lk)

∞
k=1, (τk)

∞
k=0, (Piϕk)

∞
k=0) (31)

with

F (1) = Fi, F (2) = F ′i , K(1) = Ki, K(2) =
⋃
j 6=i

Kj, (32)

Λ(1) = Φi(Λi), Λ(2) =
⋃
j 6=i

Φj(Λj). (33)

We conclude that for each f ′i ∈ F ′i there is a deterministic algorithm Ai,f ′i for P(i)

f ′i
such that for

all fi ∈ Fi

Ai,f ′i (fi) = PiA(fi, f
′
i) (34)

card(Ai,f ′i , fi) = cardΦi(Λi)(PiA, fi, f
′
i) = cardΦi(Λi)(A, fi, f

′
i) = ni(fi, f

′
i). (35)

Observe that by (6)

P(i)

f ′i
= (Fi, Gi, (PiS)f ′i , Ki,Λf ′i

),

moreover, for fi ∈ Fi
(PiS)f ′i (fi) = PiS(fi, f

′
i) = Si(fi),

and, since for λi ∈ Λi we have (Φi(λi))(fi, f
′
i) = λi(fi),

Λf ′i
= {λ( · , f ′i) : λ ∈ Φi(Λi)} = {(Φi(λi))( · , f ′i) : λi ∈ Λi} = Λi.

This implies
P(i)

f ′i
= Pi, (36)

so Ai,f ′i is a deterministic algorithm for Pi. From (27) and (35) we conclude

Eµ′icard(Ai,f ′i , µi) = Eµ′iEµicard(Ai,f ′i , fi) = Eµni(fi, f ′i) = ni. (37)

Now we estimate

Eµ‖S(f)− A(f)‖ = Eµ
∥∥(‖PiS(f)− PiA(f)‖Gi

)M
i=1

∥∥
LM
q

≥
∥∥(Eµ‖PiS(f)− PiA(f)‖Gi

)M
i=1

∥∥
LM
q
. (38)



9

Furthermore, (37) implies µ′i({f ′i ∈ Fi : card(Ai,f ′i , µi) ≤ 2ni}) ≥ 1/2, therefore

Eµ‖PiS(f)− PiA(f)‖Gi

=

∫
F ′i

∫
Fi

‖Si(fi)− Ai,f ′i (fi)‖Gi
dµi(fi)dµ

′
i(f
′
i) =

∫
F ′i

e(Si, Ai,f ′i , µi, Gi)dµ
′
i(f
′
i)

≥
∫
{f ′i∈Fi: card(Ai,f ′

i
,µi)≤2ni}

e(Si, Ai,f ′i , µi, Gi)dµ
′
i(f
′
i) ≥

1

2
eavg
d2nie(Si, µi, Gi).

Inserting this into (38), we obtain

Eµ‖S(f)− A(f)‖ ≥ 1

2

∥∥(eavg
d2nie(Si, µi, Gi)

)M
i=1

∥∥
LM
q
.

This combined with (29) yields (28).

Now consider the case that all Pi are copies of the same problem P1 = (F1, G1, S1, K1,Λ1),
and similarly, µi = µ1 (i = 1, . . . ,M).

Corollary 2.4. Under these assumptions,

eavg
n (S, µ,G) ≥ 2−1−1/qeavg

d 4nM e
(S1, µ1, G1). (39)

Proof. Let ni ∈ R, ni ≥ 0 with
∑M

i=1 ni ≤ n. and set I = {i : ni ≤ 2n
M
}, consequently, |I| ≥ M

2
.

Hence, for i ∈ I,
eavg
d2nie(S1, µ1, G1) ≥ eavg

d 4nM e
(S1, µ1, G1),

so Lemma 2.3 gives (39).

The next lemma concerns non-adaptive algorithms. We assume the same setting (19)–(26)
as introduced for Lemma 2.3, except for the definition of µ, which here is given as follows. Let
νi ≥ 0 with

∑M
i=1 νi = 1, let f ′i,0 ∈ F ′i be any, but fixed elements, and let

Ji : Fi → F, Ji(fi) = (fi, f
′
i,0) (fi ∈ Fi).

We define the measure µ on F by setting for a set C ⊂ F

µ(C) =
M∑
i=1

νiµi(J
−1
i (C)), (40)

thus µ is a probability measure on F of finite support.

Lemma 2.5. With the notation above and under assumption (18) we have for each n ∈ N0

eavg−non
n (S, µ,G) ≥M−1/q min

{
M∑
i=1

νie
avg−non
ni

(Si, µi, Gi) : ni ∈ N0, ni ≥ 0,
M∑
i=1

ni ≤ n

}
. (41)
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Proof. The proof is similar to that of Lemma 2.3. Let A be a non-adaptive deterministic
algorithm for P with card(A) ≤ n. Let ni be the number of those non-zero information
functionals of A which are from Φi(Λi). Then

M∑
i=1

ni ≤ n. (42)

We use Lemma 2.1 again, with the same choice (30)–(33) and conclusions (34)–(36), thus, for
each i there is a non-adaptive deterministic algorithm Ai,f ′i,0 for Pi such that for all fi ∈ Fi

Ai,f ′i,0(fi) = PiA(fi, f
′
i,0) = PiA(Ji(fi))

card(Ai,f ′i,0) = cardΦi(Λi)(PiA) = cardΦi(Λi)(A) = ni.

Consequently, using also (40),∫
F

‖S(f)− A(f)‖Gdµ(f) =
M∑
i=1

νi

∫
Fi

‖S(Ji(fi))− A(Ji(fi))‖Gdµi(fi)

≥ M−1/q

M∑
i=1

νi

∫
Fi

‖PiS(Ji(fi))− PiA(Ji(fi))‖Gi
dµi(fi)

= M−1/q

M∑
i=1

νi

∫
Fi

‖Si(fi)− Ai,f ′i,0(fi)‖Gi
dµi(fi)

≥ M−1/q

M∑
i=1

νie
avg−non
ni

(Si, µi, Gi),

which together with (42) implies (41).

Similarly to Corollary 2.4 we obtain for the case Pi = P1, µi = µ1, νi = M−1 (i = 1, . . . ,M)

Corollary 2.6.
eavg−non
n (S, µ,G) ≥ 2−1M−1/qeavg−non

b 2nM c
(S1, µ1, G1). (43)

Proof. Let ni ∈ N0,
∑M

i=1 ni ≤ n and define I = {i : ni ≤ 2n
M
}, thus |I| ≥ M

2
. Hence, for i ∈ I,

eavg−non
ni

(S1, µ1, G1) ≥ eavg−non

b 2nM c
(S1, µ1, G1),

so the desired result follows from Lemma 2.5.

The types of lower bounds stated in the next lemma are well-known in IBC (see [14, 20]).
For the specific form presented here we refer, e.g., to [4], Lemma 6 for statement (i) and to [9],
Proposition 3.1 for (ii).

Lemma 2.7. Assume that K = K, F is a subset of a linear space X over K, S is the restriction
to F of a linear operator from X to G, and each λ ∈ Λ is the restriction to F of a linear
mapping from X to K. Let n̄ ∈ N and suppose there are (fi)

n̄
i=1 ⊆ F such that the sets
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{λ ∈ Λ : fi(λ) 6= 0} (i = 1, . . . , n̄) are mutually disjoint. Then the following hold for all n ∈ N
with 4n < n̄:

(i) If
∑n̄

i=1 αifi ∈ F for all sequences (αi)
n̄
i=1 ∈ {−1, 1}n̄ and µ is the distribution of∑n̄

i=1 εifi, where εi are independent Bernoulli random variables with P{εi = 1} = P{εi =
−1} = 1/2, then

eavg
n (S, µ,G) ≥ 1

2
min

{
E
∥∥∥∑
i∈I

εiSfi

∥∥∥
G

: I ⊆ {1, . . . , n̄}, |I| ≥ n̄− 2n

}
.

(ii) If αfi ∈ F for all 1 ≤ i ≤ n̄ and α ∈ {−1, 1}, and µ is the uniform distribution on the
set {αfi : 1 ≤ i ≤ n̄, α ∈ {−1, 1}}, then

eavg
n (S, µ,G) ≥ 1

2
min

1≤i≤n̄
‖Sfi‖G.

We need the following well-known procedure of “boosting the success probability”, which
decreases the failure probability by repeating the algorithm a number of times and computing
the median of the outputs. The following lemma for K = R is essentially contained in [3], where
it was derived in the setting of quantum computation. We include the short proof for the sake
of completeness.

Let m ∈ N and define θK : Km → K as follows. If K = R, let θR be the mapping given by
the median, that is, if z∗1 ≤ · · · ≤ z∗m is the non-decreasing rearrangement of (z1, . . . , zm), then

θR(z1, . . . , zm) =


z∗(m+1)/2 if m is odd

z∗m/2 + z∗m/2+1

2
if m is even.

If K = C, then we set

θC(z1, . . . , zm) = θR(<(z1), . . . ,<(zm)) + iθR(=(z1), . . . ,=(zm)).

Lemma 2.8. Let ζ1, . . . , ζm be independent, identically distributed K-valued random variables
on a probability space (Ω,Σ,P), z ∈ K, ε > 0 , and assume that P{|z − ζ1|G ≤ ε} ≥ 3/4. Then

P{|z − θK(ζ1, . . . , ζm)| ≤ cKε} ≥ 1− e−m/8,

with cR = 1 and cK =
√

2.

Proof. Let χi be the indicator function of the set {|z − ζi| > ε}, thus P{χi = 1} ≤ 1/4.
Hoeffding’s inequality, see, e.g., [19], p. 191, yields

P

{
m∑
i=1

χi ≥
m

2

}
≤ P

{
m∑
i=1

(χi − Eχi) ≥
m

4

}
≤ e−m/8. (44)

Define

Ω0 =

{
ω ∈ Ω : |{i : |z − ζi(ω)| ≤ ε}| > m

2

}
,

then by (44), P(Ω0) ≥ 1− e−m/8. Fix ω ∈ Ω0. It follows that for K = R

|z − θR(ζ1(ω)), . . . , ζm(ω))| ≤ ε,



12

and for K = C

|<(z)− θR(<(ζ1(ω)), . . . ,<(ζm(ω)))| ≤ ε, |=(z)− θR(=(ζ1(ω)), . . . ,=(ζm(ω)))| ≤ ε,

and therefore
|z − θC(ζ1(ω)), . . . , ζm(ω))| ≤

√
2ε.

Finally we need some results on Banach space valued random variables. Given p with
1 ≤ p ≤ 2, we recall from Ledoux and Talagrand [13] that the type p constant τp(X) of a
Banach space X is the smallest c with 0 < c ≤ +∞, such that for all n and all sequences
(xi)

n
i=1 ⊂ X,

E
∥∥∥ n∑
i=1

εixi

∥∥∥p ≤ cp
n∑
i=1

‖xi‖p,

where (εi) denotes a sequence of independent symmetric Bernoulli random variables with P{εi =
1} = P{εi = −1} = 1

2
. X is said to be of type p if τp(X) < ∞. Trivially, each Banach space

is of type 1. Type p implies type p1 for all 1 ≤ p1 < p. For 1 ≤ p < ∞ all Lp spaces
are of type min(p, 2). Moreover, the spaces LNp are of type min(p, 2) uniformly in N , that is,

τmin(p,2)(L
N
p ) ≤ c. Furthermore, c1(log(N + 1))1/2 ≤ τ2(LN∞) ≤ c2(log(N + 1))

1
2 .

We will use the following result. The case p1 = p of it is contained in Proposition 9.11 of
[13]. The extension to the case of general p1 is Lemma 2.1 of [6].

Lemma 2.9. Let 1 ≤ p ≤ 2, p ≤ p1 < ∞. Then there is a constant c > 0 such that for each
Banach space X of type p, each n ∈ N and each sequence of independent, mean zero X-valued
random variables (ζi)

n
i=1 with E ‖ζi‖p1 <∞ (1 ≤ i ≤ n) the following holds:(
E
∥∥∥ n∑
i=1

ζi

∥∥∥p1)1/p1

≤ cτp(X)

(
n∑
i=1

(
E ‖ζi‖p1

)p/p1)1/p

. (45)

3 Norm estimation

A key part of one of the algorithms below will be randomized norm estimation. We use an
algorithm from [8]. Let (Q,Q, %) be a probability space, let 1 ≤ q < p ≤ ∞, and let p1 be such
that

2 < p1 <∞ if p =∞ and q = 1, (46)

and
1

p1

= 1 +
1

p
− 1

q
if p <∞ or q > 1. (47)

For n ∈ N define A1
n = (A1

n,ω)ω∈Ω by setting for ω ∈ Ω and f ∈ Lp(Q,Q, %) (= Lp(Q) for short)

A1
n,ω(f) =

(
1

n

n∑
i=1

|f(ξi(ω))|q
)1/q

, (48)

where ξi are independent Q-valued random variables on a probability space (Ω,Σ,P) with
distribution %.

First we recall Lemma 3.1 from [8].
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Lemma 3.1. Let 0 < α <∞. Then for x, y ∈ R with x, y ≥ 0 and x+ y > 0

min(α, 1) max(x, y)α−1|x− y| ≤ |xα − yα| ≤ max(α, 1) max(x, y)α−1|x− y|.

Moreover, if 1 ≤ α <∞, then
|x− y| ≤ |xα − yα|1/α.

The following is essentially the upper bound from Proposition 6.3 of [8]. No proof was given
there, it was just mentioned there that the (quite technical) proof of Proposition 3.4 simplifies
to yield Proposition 6.3. For the sake of completeness we include the full proof here.

Proposition 3.2. Let 1 ≤ q < p ≤ ∞, and let p1 satisfy (46)–(47). Then there is a constant
c > 0 such that for all probability spaces (Q,Q, %), f ∈ Lp(Q), and n ∈ N(

E
∣∣‖f‖Lq(Q) − A1

n,ω(f)
∣∣p1)1/p1 ≤ cnmax(1/p−1/q,−1/2)‖f‖Lp(Q).

Proof. Let u = min(p1, 2). The assumption q < p and (46)–(47) imply

1 < u ≤ 2, u ≤ p1 ≤ p, (49)

1

u
− 1 = max

(
1

p1

,
1

2

)
− 1 = max

(
1

p
− 1

q
,−1

2

)
. (50)

We have A1
n,ω(af) = |a|A1

n,ω(f) and ‖af‖Lq(Q) = |a|‖f‖Lq(Q) for a ∈ R, so we can assume
w.l.o.g. f ∈ BLp(Q), f 6= 0. With the help of Lemma 3.1 we obtain

|‖f‖Lq(Q) − A1
n,ω(f)| =

∣∣∣(‖f‖qLq(Q))
1/q − (A1

n,ω(f)q)1/q
∣∣∣

≤ max(‖f‖qLq(Q), A
1
n,ω(f)q)−(q−1)/q

∣∣‖f‖qLq(Q) − A
1
n,ω(f)q

∣∣
≤ ‖f‖−(q−1)

Lq(Q)

∣∣‖f‖qLq(Q) − A
1
n,ω(f)q

∣∣ (ω ∈ Ω).

Consequently,

(
E |‖f‖Lq(Q) − A1

n,ω(f)|p1
)1/p1 ≤ ‖f‖−(q−1)

Lq(Q)

(
E

∣∣∣∣∣‖f‖qLq(Q) −
1

n

n∑
i=1

|f(ξi)|q
∣∣∣∣∣
p1)1/p1

. (51)

Setting
ηi = ‖f‖qLq(Q) − |f(ξi)|q,

we conclude from (49) and Lemma 2.9 with X = K (the scalar field is of type u)(
E

∣∣∣∣∣‖f‖qLq(Q) −
1

n

n∑
i=1

|f(ξi)|q
∣∣∣∣∣
p1)1/p1

=

(
E
∣∣∣∣ 1n

n∑
i=1

ηi

∣∣∣∣p1
)1/p1

≤ cn−1

(
n∑
i=1

(E |ηi|p1)u/p1
)1/u

= cn1/u−1 (E |η1|p1)1/p1 ≤ cn1/u−1 (E |f(ξ1)|qp1)1/p1 .

Together with (51) we arrive at(
E |‖f‖Lq(Q) − A1

n,ω(f)|p1
)1/p1 ≤ cn1/u−1‖f‖−(q−1)

Lq(Q) (E |f(ξ1)|qp1)1/p1 . (52)
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To go on, we first assume q = 1. Taking into account the second relation of (49) and (50),
inequality (52) turns into(

E |‖f‖Lq(Q) − A1
n,ω(f)|p1

)1/p1 ≤ cn1/u−1 (E |f(ξ1)|p1)1/p1 ≤ cnmax(1/p−1,−1/2),

which concludes the proof for q = 1.
Now we assume q > 1, them by (47), p1 < p. Moreover, defining v by

1

v
+
p1

p
= 1, (53)

we have 1 ≤ v <∞, and by (47) and (53)

1

p1v
=

1

p1

− 1

p
= 1− 1

q
,

hence

(q − 1)p1v = q. (54)

Next we show that

E |f(ξ1)|qp1 ≤
(
E |f(ξ1)|(q−1)p1v

)1/v
. (55)

Indeed, if p <∞, (53) and Hölder’s inequality give

E |f(ξ1)|p1|f(ξ1)|(q−1)p1 ≤ (E |f(ξ1)|p)p1/p
(
E |f(ξ1)|(q−1)p1v

)1/v

≤
(
E |f(ξ1)|(q−1)p1v

)1/v
,

while for p =∞ we have v = 1 and

E |f(ξ1)|qp1 ≤ ‖f‖p1L∞(Q)E |f(ξ1)|(q−1)p1 ≤ E |f(ξ1)|(q−1)p1 ,

thus (55) is verified. Furthermore, by (54),(
E |f(ξ1)|(q−1)p1v

)1/v
= ‖f‖(q−1)p1

L(q−1)p1v
(Q) = ‖f‖(q−1)p1

Lq(Q) .

Together with (55) this implies

(E |f(ξ1)|qp1)1/p1 ≤ ‖f‖q−1
Lq(Q).

Inserting the latter into (52) and using (50) we obtain(
E |‖f‖Lq(Q) − A1

n,ω(f)|p1
)1/p1 ≤ cn1/u−1 = cnmax(1/p−1/q,−1/2).



15

4 Vector Valued Mean Computation

We refer to the definition of vector valued mean computation SM1,M2 given in (1)–(2). In other
words,

SM1,M2f =
1

|M2|
∑
j∈M2

fj

is the mean of the vectors
fj = (f(i, j))i∈M1 . (56)

It is easily checked by Hölder’s inequality that

‖SM1,M2‖ = |M1|(1/p−1/q)+ , (57)

(with a+ := max(a, 0) for a ∈ R). Expressed in the terminology of Section 2, we shall study
the problem

PM1,M2 =
(
B
L
M1×M2
p

, LM1
q , SM1,M2 ,K,Λ

)
,

where Λ = {δij : i ∈ M1, j ∈ M2} with δij(f) = f(i, j). Clearly, this problem is linear. For

N1, N2 ∈ N we write LN1
p for L

Z[1,N1]
p , where Z[1, N1] := {1, 2, . . . , N1}, furthermore LN1,N2

p for

L
Z[1,N1]×Z[1,N2]
p , and SN1,N2 for SZ[1,N1],Z[1,N2]. Due to the obvious identifications, it suffices to

consider SN1,N2 for the rest of the paper. If N1 = 1, SN1,N2 turns into the mean operator
SN2g = 1

N2

∑N2

j=1 g(j).

Given n ∈ N, n < N1N2, we define for SN1,N2 a non-adaptive randomized algorithm

A2
n =

(
A2
n,ω

)
ω∈Ω

with (Ω,Σ, µ) a suitable probability space as follows. Let ηl (l = 1, . . . ,
⌈
n
N1

⌉
) be independent

uniformly distributed on {1, . . . , N2} random variables, defined on (Ω,Σ, µ). We put for f ∈
LN1,N2
p , 1 ≤ i ≤ N1(

A2
n,ωf

)
(i) = 0 (n < N1) (58)

(
A2
n,ωf

)
(i) =

⌈
n

N1

⌉−1

⌈
n
N1

⌉∑
l=1

f(i, ηl(ω)) (N1 ≤ n < N1N2). (59)

Remark 4.1. The constants in the subsequent statements and proofs are independent of the
parameters n, N1,N2, and m. This is also made clear by the order of quantifiers in the respective
statements.

The following result is a slight extension to the case p 6= q of the upper bounds in Wiegand’s
Theorem 4.2 in [25].

Proposition 4.2. Let 1 ≤ p, q ≤ ∞, put p̄ = min(p, 2), and let w = p if p <∞ and 2 ≤ w <∞
if p = ∞. Then there is a constant c > 0 such that for all n,N1, N2 ∈ N with n < N1N2 and
all f ∈ LN1,N2

p

EA2
n,ωf = SN1,N2f (n ≥ N1), card(A2

n,ω) ≤ 2n, (60)
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and(
E ‖SN1,N2f − A2

n,ωf‖wLN1
q

)1/w

≤ cN
(1/p−1/q)+
1 ‖f‖

L
N1,N2
p


⌈
n
N1

⌉−1+1/p̄

if p <∞∨ q <∞⌈
n
N1

⌉−1/2

min
(

log(N1 + 1),
⌈
n
N1

⌉)1/2

if p = q =∞.
(61)

Proof. Relation (60) is obvious, while (61) for n < N1 directly follows from (57) and (58).
Thus, in the subsequent proof we assume n ≥ N1. Next we prove (61) for p = q. This case is
essentially contained in the proof of Theorem 4.2 in Wiegand [25], for the sake of completeness
we include the short argument. With fj ∈ LN1

p being defined according to (56) we get from
(45)(

E‖SN1,N2f − A2
n,ωf‖wLN1

p

)1/w

=

⌈
n

N1

⌉−1
(
E

∥∥∥∥∥
dn/N1e∑
l=1

(E fηl − fηl)

∥∥∥∥∥
w

L
N1
p

)1/w

≤ cτp̄(L
N1
p )

⌈
n

N1

⌉−1
( dn/N1e∑

l=1

(
E
∥∥∥E fηl − fηl∥∥∥w

L
N1
p

)p̄/w)1/p̄

≤ cτp̄(L
N1
p )

⌈
n

N1

⌉−1
( dn/N1e∑

l=1

(
E ‖fηl‖wLN1

p

)p̄/w)1/p̄

= cτp̄(L
N1
p )

⌈
n

N1

⌉−1
(⌈

n

N1

⌉∥∥∥∥(‖fj‖LN1
p

)N2

j=1

∥∥∥∥p̄
L
N2
w

)1/p̄

≤ cτp̄(L
N1
p )

⌈
n

N1

⌉−1+1/p̄

‖f‖
L
N1,N2
p

≤ c‖f‖
L
N1,N2
p


⌈
n
N1

⌉−1+1/p̄

if 1 ≤ p <∞⌈
n
N1

⌉−1/2

min
(

log(N1 + 1),
⌈
n
N1

⌉)1/2

if p =∞,
(62)

where the second term in the minimum of (62) for p =∞ comes from the bound

‖SN1,N2f − A2
n,ωf‖LN1∞

≤ 2‖f‖
L
N1,N2∞

(ω ∈ Ω),

which is an obvious consequence of (57) and (59). This shows (61) for p = q.
For p 6= q we have(

E‖SN1,N2f − A2
n,ωf‖wLN1

q

)1/w

≤ cN
(1/p−1/q)+
1

(
E‖SN1,N2f − A2

n,ωf‖wLN1
p

)1/w

. (63)

This together with (62) gives the desired result except for the case p = ∞, q < ∞. That case
follows by setting q1 = max(q, 2) and representing

SN1,N2 : LN1,N2
∞

J−→ LN1,N2
q1

SN1,N2−→ LN1
q ,

with J the identical embedding.
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Now we consider the case 2 < p < q ≤ ∞ and define for it an adaptive randomized
algorithm. Let f ∈ LN1,N2

p and set fi = (f(i, j))N2
j=1 (note that now the fi’s are the rows). Let

m,n ∈ N and let{
ξjk : 1 ≤ j ≤

⌈
n

N1

⌉
, 1 ≤ k ≤ m

}
, {ηjk : 1 ≤ j ≤ n, 1 ≤ k ≤ m} , (64)

be independent random variables on a probability space (Ω,Σ,P) uniformly distributed over
{1, . . . , N2}. It is convenient for us to assume that (Ω,Σ,P) = (Ω1,Σ1,P1)× (Ω2,Σ2,P2), that
the (ξjk) are defined on (Ω1,Σ1,P1), and the (ηjk) on (Ω2,Σ2,P2). Furthermore, the expectations
with respect to the corresponding probability spaces are denoted by E,E1,E2.

We first apply k times algorithm A1
dn/N1e to estimate ‖fi‖LN2

2
and compute the median of

the results . Thus, we put for ω1 ∈ Ω1, 1 ≤ i ≤ N1, 1 ≤ k ≤ m

aik(ω1) =

(⌈
n

N1

⌉−1 ∑
1≤j≤

⌈
n
N1

⌉ |fi(ξjk(ω1))|2
)1/2

ãi(ω1) = θR
(
(aik(ω1))mk=1

)
.

Next we define the number of samples to be taken in every row, setting for ω1 ∈ Ω1, 1 ≤ i ≤ N1

ni(ω1) =



⌈
n

N1

⌉
if ãi(ω1)2 ≤ N−1

1

N1∑
l=1

ãl(ω1)2

⌈
ã2
in∑N1

l=1 ã
2
l

⌉
if ãi(ω1)2 > N−1

1

N1∑
l=1

ãl(ω1)2,

(65)

and approximate
(
SN1,N2f

)
(i) = SN2fi for ω2 ∈ Ω2 by

bik(ω1, ω2) =
1

ni(ω1)

ni(ω1)∑
j=1

fi(ηjk(ω2)) (1 ≤ k ≤ m) (66)

b̃i(ω1, ω2) = θK
(
(bik(ω1, ω2))mk=1

)
. (67)

Finally we define the output A3
n,m,ω(f) ∈ LN1

q of the algorithm for ω = (ω1, ω2) as

A3
n,m,ω(f) =

{
0 if n < N1(
b̃i(ω1, ω2)

)N1

i=1
if N1 ≤ n < N1N2.

(68)

Proposition 4.3. Let 2 < p < q ≤ ∞ and 1 ≤ w < ∞. Then there exist constants c1, c2 > 0
such that the following hold for all m,n,N1, N2 ∈ N and f ∈ LN1,N2

p :

card(A3
n,m,ω) ≤ 6mn (69)

and for m ≥ c1 log(N1 +N2), 1 ≤ n < N1N2(
E ‖SN1,N2f − A3

n,m,ωf‖wLN1
q

)1/w

≤ c2

(
N

1/p−1/q
1

⌈
n

N1

⌉−(1−1/p)

+

⌈
n

N1

⌉−1/2
)
‖f‖

L
N1,N2
p

.(70)
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Proof. For n < N1 relation (69) is trivial and (70) follows from (57). Hence in the sequel we
assume n ≥ N1. Note that 1 ≤ ni ≤ n and the total number of samples is

mN1

⌈
n

N1

⌉
+m

N1∑
i=1

ni ≤ 2mN1

⌈
n

N1

⌉
+m

N1∑
i=1

⌈
ã2
in∑N1

l=1 ã
2
l

⌉
≤ 3mn+ 3mN1 ≤ 6mn,

which is (69). Fix f ∈ LN1,N2
p . By Proposition 3.2

E1

∣∣∣‖fi‖LN2
2
− aik

∣∣∣ ≤ c(1)

(
n

N1

)−(1/2−1/p)

‖fi‖LN2
p

(71)

and therefore,

P1

{
ω1 ∈ Ω1 :

∣∣∣‖fi‖LN2
2
− aik(ω1)

∣∣∣ ≤ 4c(1)

(
n

N1

)−(1/2−1/p)

‖fi‖LN2
p

}
≥ 3

4
. (72)

Now we set

c(2) =
8(w + 1)

log e
(73)

(recall that log always means log2), then m ≥ c(2) log(N1 +N2) implies e−m/8 ≤ (N1 +N2)−w−1.
From (72) and Lemma 2.8 we conclude

P1

{
ω1 ∈ Ω1 :

∣∣∣‖fi‖LN2
2
− ãi(ω1)

∣∣∣ ≤ 4c(1)

(
n

N1

)−(1/2−1/p)

‖fi‖LN2
p

}
≥ 1− (N1 +N2)−w−1. (74)

Let

Ω1,0 =

{
ω1 ∈ Ω1 :

∣∣∣‖fi‖LN2
2
− ãi(ω1)

∣∣∣ ≤ 4c(1)

(
n

N1

)−(1/2−1/p)

‖fi‖LN2
p

(1 ≤ i ≤ N1)

}
, (75)

thus
P1(Ω1,0) ≥ 1− (N1 +N2)−w. (76)

Fix ω1 ∈ Ω1,0. Then by (75) for all i

ãi(ω1) ≤ c‖fi‖LN2
p
. (77)

Consequently,(
1

N1

N1∑
i=1

ãi(ω1)2

)1/2

≤ c

(
1

N1

N1∑
i=1

‖fi‖2

L
N2
p

)1/2

≤ c

(
1

N1

N1∑
i=1

‖fi‖p
L
N2
p

)1/p

= c‖f‖
L
N1,N2
p

. (78)

It follows from (65) that

ni(ω1) ≥
⌈
n

N1

⌉
(1 ≤ i ≤ N1). (79)
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Moreover, by (66) and the standard variance estimate for the Monte Carlo method,

E2

∣∣∣∣(SN1,N2f
)
(i)− bik(ω1, ω2)

∣∣∣∣ = E2

∣∣∣∣SN2fi −
1

ni(ω1)

ni(ω1)∑
j=1

fi(ηjk(ω2))

∣∣∣∣
≤ ni(ω1)−1/2‖fi‖LN2

2
(1 ≤ i ≤ N1, 1 ≤ k ≤ m). (80)

Let

I(ω1) :=

{
1 ≤ i ≤ N1 : ãi(ω1) ≤

‖fi‖LN2
2

2

}
,

hence from (75)

‖fi‖LN2
2
≤ c

(
n

N1

)−(1/2−1/p)

‖fi‖LN2
p

(i ∈ I(ω1)),

which combined with (79) and (80) gives

E2

∣∣∣∣(SN1,N2f
)
(i)− bik(ω1, ω2)

∣∣∣∣ ≤ c

(
n

N1

)−(1−1/p)

‖fi‖LN2
p

(i ∈ I(ω1), 1 ≤ k ≤ m). (81)

Now assume i 6∈ I(ω1), thus

ãi(ω1) >
‖fi‖LN2

2

2
. (82)

We show that

E2

∣∣∣∣(SN1,N2f
)
(i)− bik(ω1, ω2)

∣∣∣∣ ≤ c

(
n

N1

)−1/2

‖f‖
L
N1,N2
p

(i 6∈ I(ω1), 1 ≤ k ≤ m). (83)

Indeed, if ã2
i ≤ N−1

1

∑N1

l=1 ã
2
l , then by (65), (80), (82), and (78)

E2

∣∣∣∣(SN1,N2f
)
(i)− bik(ω1, ω2)

∣∣∣∣ ≤ 2

(
n

N1

)−1/2

ãi ≤ 2

(
n

N1

)−1/2(∑N1

l=1 ã
2
l

N1

)1/2

≤ c

(
n

N1

)−1/2

‖f‖
L
N1,N2
p

.

On the other hand, if ã2
i > N−1

1

∑N1

l=1 ã
2
l , the same chain of relations yields

E2

∣∣∣∣(SN1,N2f
)
(i)− bik(ω1, ω2)

∣∣∣∣ ≤ 2

(
ã2
in∑N1

l=1 ã
2
l

)−1/2

ãi = 2

(
n

N1

)−1/2(∑N1

l=1 ã
2
l

N1

)1/2

≤ c

(
n

N1

)−1/2

‖f‖
L
N1,N2
p

.

This proves (83).
Combining (81) and (83), we conclude for 1 ≤ i ≤ N1, 1 ≤ k ≤ m

E2

∣∣∣∣(SN1,N2f
)
(i)− bik(ω1, ω2)

∣∣∣∣ ≤ c(3)

(
n

N1

)−(1−1/p)

‖fi‖LN2
p

+ c(3)

(
n

N1

)−1/2

‖f‖
L
N1,N2
p

.
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Arguing as above (71)–(74) and setting c(4) = 4cKc(3), with cK from Lemma 2.8, we obtain
from (67) for ω1 ∈ Ω1,0, m ≥ c(2) log(N1 +N2), and 1 ≤ i ≤ N1

P2

{
ω2 ∈ Ω2 :

∣∣∣(SN1,N2f
)
(i)− b̃i(ω1, ω2)

∣∣∣
≤ c(4)

(
n

N1

)−(1−1/p)

‖fi‖LN2
p

+ c(4)

(
n

N1

)−1/2

‖f‖
L
N1,N2
p

}
≥ 1− (N1 +N2)−w−1. (84)

Define

Ω2,0(ω1) =

{
ω2 ∈ Ω2 :

∣∣∣(SN1,N2f
)
(i)− b̃i(ω1, ω2)

∣∣∣
≤ c(4)

(
n

N1

)−(1−1/p)

‖fi‖LN2
p

+ c(4)

(
n

N1

)−1/2

‖f‖
L
N1,N2
p

(1 ≤ i ≤ N1)

}
, (85)

thus from (84), for all ω1 ∈ Ω1,0

P2

(
Ω2,0(ω1)

)
≥ 1− (N1 +N2)−w. (86)

Now we set

Ω0 = {(ω1, ω2) ∈ Ω : ω1 ∈ Ω1,0, ω2 ∈ Ω2,0(ω1)}. (87)

Since for fixed f all random variables (64) take only finitely many values, it follows readily that
Ω0 ∈ Σ. Furthermore, from (76) and (86),

P(Ω0) =

∫
Ω1,0

P2(Ω2,0(ω1))dP1(ω1)

≥ (1− (N1 +N2)−w)2 > 1− 2(N1 +N2)−w. (88)

It follows from (85) and (87) that∥∥SN1,N2f − (b̃i(ω))N1
i=1

∥∥
L
N1
q

≤ c(4)

(
n

N1

)−(1−1/p)∥∥∥(‖fi‖LN2
p

)N1

i=1

∥∥∥
L
N1
q

+ c(4)

(
n

N1

)−1/2

‖f‖
L
N1,N2
p

≤ c(4)

(
N

1/p−1/q
1

(
n

N1

)−(1−1/p)

+

(
n

N1

)−1/2
)
‖f‖

L
N1,N2
p

(ω ∈ Ω0). (89)

To estimate the error on Ω \ Ω0 we note that for all ω ∈ Ω

|b̃i(ω)| ≤ max
1≤k≤m

|bik| ≤ max
1≤j≤N2

|f(i, j)| ≤ N
1/p
2 ‖fi‖LN2

p

and therefore,∥∥(b̃i(ω))N1
i=1

∥∥
L
N1
q
≤ N

1/p
2

∥∥∥(‖fi‖LN2
p

)N1

i=1

∥∥∥
L
N1
q

≤ N
1/p−1/q
1 N

1/p
2 ‖f‖LN1,N2

p
. (90)
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Furthermore, by (57), ∥∥SN1,N2f
∥∥
L
N1
q
≤ N

1/p−1/q
1 ‖f‖

L
N1,N2
p

. (91)

Combining (88), (90), and (91), we conclude(∫
Ω\Ω0

∥∥SN1,N2f − (b̃i(ω))N1
i=1

∥∥w
L
N1
q
dP(ω)

)1/w

≤ N
1/p−1/q
1

(
1 +N

1/p
2

)
P(Ω \ Ω0)1/w‖f‖

L
N1,N2
p

≤ 2N
1/p−1/q
1

(
1 +N

1/p
2

)
(N1 +N2)−1‖f‖

L
N1,N2
p

≤ 4N
1/p−1/q
1 N

1/p
2 (N1 +N2)−1‖f‖

L
N1,N2
p

≤ 4N
1/p−1/q
1 N

−(1−1/p)
2 ‖f‖

L
N1,N2
p

≤ 4N
1/p−1/q
1

(
n

N1

)−(1−1/p)

‖f‖
L
N1,N2
p

,

the last relation being a consquence of n < N1N2. Together with (89) this shows (70).

Proposition 4.4. Let 1 ≤ p, q ≤ ∞. Then there exist constants 0 < c0 < 1, c1 . . . c4 > 0 such
that for each n,N1, N1 ∈ N, with n < c0N1N2 there exist probability measures µ(1), . . . , µ(4) with
finite support in B

L
N1,N2
p

such that

eavg
n (SN1,N2 , µ(1), LN1

q ) ≥ c1

⌈
n

N1

⌉−1/2(
min

(
log(N1 + 1),

⌈
n

N1

⌉))δq,∞/2
, (92)

eavg
n (SN1,N2 , µ(2), LN1

q ) ≥ c2N
1/p−1/q
1

⌈
n

N1

⌉−(1−1/p)

, (93)

eavg
n (SN1,N2 , µ(3), LN1

q ) ≥ c3

⌈
n

N1

⌉−(1−1/p)

, (94)

eavg−non
n

(
SN1,N2 , µ(4), LN1

q

)
≥ c4N

1/p−1/q
1

⌈
n

N1

⌉−1/2

. (95)

Proof. The proofs of (92) and (93) are similar to Wiegand’s lower bound proofs of the case
p = q, see Theorem 4.2 in [25]. For a number 1 ≤ L ≤ N2 we define L disjoint blocks of
{1, . . . , N2} by setting

Dj =

{
(j − 1)

⌊
N2

L

⌋
+ 1, . . . , j

⌊
N2

L

⌋}
(j = 1, . . . , L). (96)

We have

|Dj| =
⌊
N2

L

⌋
≥ N2

2L
. (97)

We set c0 = 1
21

, let n ∈ N be such that

1 ≤ n <
N1N2

21
(98)

and put

L =

⌊
4n

N1

⌋
+ 1, (99)
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hence
4n

N1

< L ≤ 5

⌈
n

N1

⌉
(100)

and, since by (98), 4n
N1

< N2,
L ≤ N2.

To prove (92), we define functions ψij ∈ LN1,N2
p by

ψij(s, t) =

{
1, if s = i and t ∈ Dj

0 otherwise.

By the construction of the ψij,
N1∑
i=1

L∑
j=1

αijψij ∈ BL
N1,N2
p

for all αij = ±1. Let (εij)
N1,L
i=1,j=1 be independent symmetric Bernoulli random variables and let

µ(1) be the distribution of
∑N1,L

i=1,j=1 εijψij. Since by (100), LN1 > 4n, we can apply Lemma 2.7.
So let K be any subset of {(i, j) : 1 ≤ i ≤ N1, 1 ≤ j ≤ L} with |K| ≥ LN1 − 2n. Then

|K| ≥ 1

2
LN1.

For 1 ≤ i ≤ N1 let
Ki = {1 ≤ j ≤ L : (i, j) ∈ K}

and

I :=

{
1 ≤ i ≤ N1 : |Ki| ≥

L

4

}
.

Then

|I| ≥ N1

4
. (101)

Let (ei)
N1
i=1 denote the unit vectors in RN1 , (gi)

dN1/4e
i=1 the unit vectors in RdN1/4e. Then from

(97), (101), and the contraction principle for Rademacher series (see [13], Theorem 4.4) we get

E
∥∥∥∥ ∑

(i,j)∈K

εijS
N1,N2ψij

∥∥∥∥
L
N1
q

≥ |D1|
N2

E
∥∥∥∥∑
i∈I

∑
j∈Ki

εijei

∥∥∥∥
L
N1
q

=
|D1|
N2

E
∥∥∥∥ |I|∑
i=1

|Ki|∑
j=1

εijei

∥∥∥∥
L
N1
q

≥ |D1|
N2

E

∥∥∥∥∥
dN1/4e∑
i=1

dL/4e∑
j=1

εijei

∥∥∥∥∥
L
N1
q

=
|D1| dN1/4e1/q

N2N
1/q
1

E

∥∥∥∥∥
dN1/4e∑
i=1

dL/4e∑
j=1

εijgi

∥∥∥∥∥
L
dN1/4e
q

≥ 1

8L
E

∥∥∥∥∥
dN1/4e∑
i=1

dL/4e∑
j=1

εijgi

∥∥∥∥∥
L
dN1/4e
q

and from Lemma 2.7 (i)

eavg
n (SN1,N2 , µ(1), LN1

q )

≥ 1

2
min

|K|≥LN1−2n
E

∥∥∥∥∥ ∑
(i,j)∈K

εijS
N1,N2ψij

∥∥∥∥∥
L
N1
q

≥ 1

16L
E

∥∥∥∥∥
dN1/4e∑
i=1

dL/4e∑
j=1

εijgi

∥∥∥∥∥
L
dN1/4e
q

. (102)
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For q =∞ we use Lemma 5.3 of [11] and (100) to get

eavg
n (SN1,N2 , µ(1), LN1

∞ ) ≥ c

L

(⌈
L

4

⌉
min

(
log

(⌈
N1

4

⌉
+ 1

)
,

⌈
L

4

⌉))1/2

≥ c

⌈
n

N1

⌉−1/2

min

(
log(N1 + 1),

⌈
n

N1

⌉)1/2

.

If 1 ≤ q < ∞, we denote ε̄j = (εij)
dN1/4e
i=1 ∈ L

dN1/4e
q and let (αj)

dL/4e
j=1 be independent, also

of εij, symmetric Bernoulli random variables. Then, using the equivalence of moments for
Rademacher series and Khintchine’s inequality (see [13], Theorem 4.7 and Lemma 4.1) we get
from (100) and (102),

eavg
n (SN1,N2 , µ(1), LN1

q )

≥ 1

16L
E

∥∥∥∥∥
dL/4e∑
j=1

ε̄j

∥∥∥∥∥
L
dN1/4e
q

=
1

16L
E (α)E (ε)

∥∥∥∥∥
dL/4e∑
j=1

αj ε̄j

∥∥∥∥∥
L
dN1/4e
q

=
1

16L
E (ε)E (α)

∥∥∥∥∥
dL/4e∑
j=1

αj ε̄j

∥∥∥∥∥
L
dN1/4e
q

≥ c

L
E (ε)

(
E (α)

∥∥∥∥∥
dL/4e∑
j=1

αj ε̄j

∥∥∥∥∥
q

L
dN1/4e
q

)1/q

=
c

L
E (ε)

(⌈
N1

4

⌉−1 dN1/4e∑
i=1

E (α)

∣∣∣∣∣
dL/4e∑
j=1

αjεij

∣∣∣∣∣
q)1/q

≥ c

L

⌈
L

4

⌉1/2

≥ cL−1/2 ≥ c

⌈
n

N1

⌉−1/2

.

This proves (92).
To show the second lower bound, (93), we use the same set of blocks Dj (j = 1, . . . , L) as

defined in (96) and the same L given by (99), put

ψij(s, t) =

{
N

1/p
1 N

1/p
2 |Dj|−1/p if s = i and t ∈ Dj,

0 otherwise,

and let µ(2) be the unifrom distribution on the set

{αψij : i = 1, . . . , N1, j = 1, . . . , L, α = ±1} ⊂ B
L
N1,N2
p

.

Recall that by (100), LN1 > 4n, so from Lemma 2.7(ii) and relations (97) and (100) we conclude

eavg
n (SN1,N2 , µ(2), LN1

q ) ≥ 1

2

∥∥SN1,N2ψ1,1

∥∥
L
N1
q

=
1

2
N

1/p−1/q
1 N

−(1−1/p)
2 |Dj|1−1/p

≥ 1

2
N

1/p−1/q
1 (2L)−(1−1/p) ≥ cN

1/p−1/q
1

⌈
n

N1

⌉−(1−1/p)

,

thus (93).
For the proof of the remaining inequalities (94) and (95) we can assume n ≥ N1, because

for n < N1 the already shown relation (92) implies (94), while (93) together with (17) gives
(95). We set

L = 4

⌈
4n

N1

⌉
+ 1, (103)
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hence by (98)

L ≤ 16n

N1

+ 5 ≤ 21n

N1

≤ N2.

To prove (94), we apply Corollary 2.4, where we put

M = N1, F1 = LN2
p , S1 = SN2 , G1 = K1 = K, Λ1 = {δj : 1 ≤ j ≤ N2} (104)

with δj(g) = g(j). Then obviously (18) is satisfied and

F =

N1∏
i=1

LN2
p = LN1,N2

p , G = LN1
q , S = SN1,N2 , (105)

K = K, Λ = {δij : 1 ≤ i ≤ N1, 1 ≤ j ≤ N2}. (106)

Again we use the blocks Dj (j = 1, . . . , L) given by (96) and define ψj ∈ BL
N2
p

by

ψj(t) =

{
N

1/p
2 |Dj|−1/p if t ∈ Dj,

0 otherwise.

Let µ1 be the uniform distribution on {αψj : 1 ≤ j ≤ L, α = ±1}. The measure µ(3) = µN1
1 ,

compare (27), has its support in B
L
N1,N2
p

and we derive from Corollary 2.4

eavg
n (SN1,N2 , µ(3), LN1

q ) ≥ 2−1−1/qeavg⌈
4n
N1

⌉(SN2 , µ1,K). (107)

By Lemma 2.7(ii), (97), and (103)

eavg⌈
4n
N1

⌉(SN2 , µ1,K) ≥ 1

2
|SN2ψ1| = N

1/p−1
2 |Dj|1−1/p ≥ N

1/p−1
2

(
N2

2
⌈

16n
N1

⌉)1−1/p

≥ c

⌈
n

N1

⌉−(1−1/p)

,

which together with (107) gives (94).
Finally, we turn to (95), where we use Corollary 2.6 with the same choice (104). Conse-

quently, (18), (105), and (106) hold. We set

ψj = N
1/p
1 χDj

∈ LN2
p (j = 1, . . . , L), (108)

with Dj given by (96) and L by (103). Let (εj)
L
j=1 be independent symmetric Bernoulli random

variables, let µ1 be the distribution of
∑L

j=1 εjψj, and f ′i,0 = 0 (i = 1, . . . , N1). Denote the

resulting from (40) measure by µ(4). Observe that by (108) µ(4) is supported by B
L
N1,N2
p

. Now

(43) and (17) yield

eavg−non
n (SN1,N2 , µ(4), LN1

q ) ≥ 1

2
N
−1/q
1 eavg−non⌈

2n
N1

⌉ (SN2 , µ1,K) ≥ 1

2
N
−1/q
1 eavg⌈

2n
N1

⌉(SN2 , µ1,K). (109)

By Lemma 2.7(i), (97), (103), (108), and Khintchine’s inequality

eavg⌈
2n
N1

⌉(SN2 , µ1,K) ≥ 1

2
min

{
E
∣∣∣∑
i∈I

εiS
N2ψi

∣∣∣ : I ⊆ {1, . . . , L}, |I| ≥ L− 2

⌈
2n

N1

⌉}

≥ cL1/2|SN2ψ1| ≥ cN
1/p
1 L−1/2 ≥ cN

1/p
1

⌈
n

N1

⌉−1/2

.

Inserting this into (109) finally yields (95).
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Theorem 4.5. Let 1 ≤ p, q ≤ ∞ and put p̄ = min(p, 2). Then there exists constants 0 < c0 < 1,
c1, . . . , c6 > 0, such that for n,N1, N2 ∈ N with n < c0N1N2 the following hold:
If p ≤ 2 or p ≥ q, then

c1N
(1/p−1/q)+
1

⌈
n

N1

⌉−(1−1/p̄)(
min

(
log(N1 + 1),

⌈
n

N1

⌉))δp,∞δq,∞/2
≤ eran

n (SN1,N2 , B
L
N1,N2
p

, LN1
q ) ≤ eran−non

n (SN1,N2 , B
L
N1,N2
p

, LN1
q )

≤ c2N
(1/p−1/q)+
1

⌈
n

N1

⌉−(1−1/p̄)(
min

(
log(N1 + 1),

⌈
n

N1

⌉))δp,∞δq,∞/2
. (110)

If 2 < p < q, then

c3N
1/p−1/q
1

⌈
n

N1

⌉−(1−1/p)

+ c3

⌈
n

N1

⌉−1/2

(log(N1 + 1))δq,∞/2

≤ eran
n (SN1,N2 , B

L
N1,N2
p

, LN1
q )

≤ c4N
1/p−1/q
1

⌈
n

N1 log(N1 +N2)

⌉−(1−1/p)

+ c4

⌈
n

N1 log(N1 +N2)

⌉−1/2

(111)

and

c5N
1/p−1/q
1

⌈
n

N1

⌉−1/2

≤ eran−non
n (SN1,N2 , B

L
N1,N2
p

, LN1
q ) ≤ c6N

1/p−1/q
1

⌈
n

N1

⌉−1/2

. (112)

Proof. First we mention that for all lower bounds we use the relation between average case and
randomized setting, Lemma 2.2, without further notice.

For 1 ≤ n < N1 the upper bounds follow from (57), the lower bounds from (93) and (94) of
Proposition 4.4.

In the sequel we assume n ≥ N1. The upper bounds in (110) and (112) are a consequence of
Proposition 4.2, since the involved algorithm is non-adaptive. If n < 6N1 dc(1) log(N1 +N2)e,
where c(1) stands for the constant c1 from Proposition 4.3, the upper bound of (111) follows
from (57). Now assume

n ≥ 6N1 dc(1) log(N1 +N2)e . (113)

We set

m = dc(1) log(N1 +N2)e , ñ =

⌊
n

6 dc(1) log(N1 +N2)e

⌋
,

and use Proposition 4.3 with ñ instead of n. Hence by (69)

card(A3
ñ,m,ω) ≤ 6mñ ≤ n.

and therefore

eran
n (SN1,N2 , B

L
N1,N2
p

, LN1
q ) ≤ c

(
N

1/p−1/q
1

⌈
ñ

N1

⌉−(1−1/p)

+

⌈
ñ

N1

⌉−1/2
)
. (114)

Furthermore, using (113), we obtain⌈
ñ

N1

⌉
>

n

12N1 dc(1) log(N1 +N2)e
≥ n

12N1(c(1) + 1) log(N1 +N2)
(115)
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and ⌈
n

N1 log(N1 +N2)

⌉
<

n+N1 log(N1 +N2)

N1 log(N1 +N2)
≤

n
(

1 + 1
6c(1)

)
N1 log(N1 +N2)

which together with (115) yields⌈
ñ

N1

⌉
>

1

12(c(1) + 1)
(

1 + 1
6c(1)

) ⌈ n

N1 log(N1 +N2)

⌉
. (116)

Combining (114) and (116) completes the proof of the upper bound in (111).
Now we prove the lower bounds in (110)–(112). First assume p ≤ 2. Then the lower bound

of (110) is a consequence of (93) and (94) of Proposition 4.4. Next let p > 2 and p ≥ q. In this
case the lower bound in (110) follows from (92). Now consider the case 2 < p < q. Here the
lower bound of (112) is a consequence of (95). Finally, (92) and (93) imply

eran
n (SN1,N2 , B

L
N1,N2
p

, LN1
q )

≥ c(2)N
1/p−1/q
1

⌈
n

N1

⌉−(1−1/p)

+ c(2)

⌈
n

N1

⌉−1/2

min

(
log(N1 + 1),

⌈
n

N1

⌉)δq,∞/2
, (117)

which in the case q < ∞ and in the case (q = ∞) ∧ (dn/N1e ≥ log(N1 + 1)) is just the lower
bound in (111). Now assume q =∞ and dn/N1e < log(N1 + 1). Then

N
1/p
1

⌈
n

N1

⌉−(1−1/p)

≥ N
1/p
1 (log(N1 + 1))−(1/2−1/p)

⌈
n

N1

⌉−1/2

≥ c(3)

⌈
n

N1

⌉−1/2

(log(N1 + 1))1/2.

This combined with (117) gives

eran
n (SN1,N2 , B

L
N1,N2
p

, LN1
∞ ) ≥ c(2)N

1/p
1

⌈
n

N1

⌉−(1−1/p)

≥ c(2)

2
N

1/p
1

⌈
n

N1

⌉−(1−1/p)

+
c(2)c(3)

2

⌈
n

N1

⌉−1/2

(log(N1 + 1))1/2,

thus the lower bound of (111) also for that case.

Let us have a look at the widest resulting gap between non-adaptive and adaptive random-
ized minimal errors in the region N1 ≤ n < c(0)N1N2, with 0 < c(0) < 1 standing for the
constant c0 from Theorem 4.5. Consider for 2 < p < q, n ∈ N

γ(p, q, n) = max
N1,N2:N1≤n<c(0)N1N2

eran−non
n (SN1,N2 , B

L
N1,N2
p

, LN1
q )

eran
n (SN1,N2 , B

L
N1,N2
p

, LN1
q )

.

Corollary 4.6. Let 2 < p < q ≤ ∞. Then there are constants c1, c2 > 0 such that for all n ∈ N

c1n

( 1
2−

1
p)( 1

p−
1
q )

1
2−

1
q (log(n+ 1))−(1−1/p) ≤ γ(p, q, n) ≤ c2n

( 1
2−

1
p)( 1

p−
1
q )

1
2−

1
q . (118)
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Proof. It is convenient to estimate

γ(p, q, n)−1 = min
N1,N2:N1≤n<c(0)N1N2

eran
n (SN1,N2 , B

L
N1,N2
p

, LN1
q )

eran−non
n (SN1,N2 , B

L
N1,N2
p

, LN1
q )

.

It follows from (111) and (112) of Theorem 4.5 that there are constants c1, c2 > 0 such that

c1 min
N1:N1≤n

max

(( n

N1

)1/p−1/2

, N
1/q−1/p
1

)
≤ γ(p, q, n)−1

≤ c2 min
N1,N2:N1≤n<c(0)N1N2

((( n

N1

)1/p−1/2

+N
1/q−1/p
1

)
(log(N1 +N2))1−1/p

)
(119)

(for simplicity we omitted some log factors). With x0 satisfying( n
x0

)1/p−1/2

= x
1/q−1/p
0 , (120)

we have

x0 = n

1
2−

1
p

1
2−

1
q , x0 ∈ [1, n]. (121)

and

min
x∈[1,n]

max

((n
x

)1/p−1/2

, x1/q−1/p

)
= x

1/q−1/p
0 = n

−
( 1
2−

1
p)( 1

p−
1
q )

1
2−

1
q .

This together with the lower bound in (119) implies

cn
−

( 1
2−

1
p)( 1

p−
1
q )

1
2−

1
q ≤ γ(p, q, n)−1

and hence the upper bound in (118).
Next we set

N1 = dx0e , N2 =

⌊
n

c(0)x0

⌋
+ 1

implying

N1 ≤ n, x0 ≤ N1 < 2x0,
n

c(0)N1

≤ n

c(0)x0

< N2 <
2n

c(0)x0

≤ 2n

c(0)
,

so the requirement N1 ≤ n < c(0)N1N2 is fulfilled and the upper bound of (119) together with
(120) and (121) gives

γ(p, q, n)−1 ≤ c

((
n

2x0

)1/p−1/2

+ x
1/q−1/p
0

)
(log(2x0 + 2c(0)−1n)1−1/p

≤ cn
−

( 1
2−

1
p)( 1

p−
1
q )

1
2−

1
q (log(n+ 1))1−1/p,

which yields the lower bound of (118).
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Consider the exponent of the gap between non-adaption and adaption, for which we have(
1
2
− 1

p

)(
1
p
− 1

q

)
1
2
− 1

q

≤

(
1
2
− 1

q

)2

4
(

1
2
− 1

q

) =
1

8
− 1

4q
≤ 1

8
,

with equality everywhere iff p = 4, q = ∞. With this choice the following holds. For any
c1, c2 with c(0)1/2 < c1 < c2 a gap of order n1/8 (up to log’s) is reached for N1(n), N2(n) ∈
[c1n

1/2, c2n
1/2] (n ∈ N, n ≥ c2

2).
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[18] E. Novak, H. Woźniakowski, Tractability of Multivariate Problems, Volume 1, Linear In-
formation, European Math. Soc., Zürich, 2008.

[19] D. Pollard, Convergence of Stochastic Processes, Springer-Verlag, New York, 1984.
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