Exercise
 Information-Based Complexity
 Prof. Dr. S. Heinrich

Summer term 2015
Sheet 2

Return until 12.05.2015, 12:00, into the box of the work group (Building 48, 6. floor)

Exercise 1:

Show that for arbitrary subsets $A \subseteq l_{\infty}^{n}$ the following holds:

$$
\operatorname{rad}(A)=\frac{1}{2} \operatorname{diam}(A) .
$$

Exercise 2:

Let G be the linear space of continuous functions f with $f(0)=0$, i.e.

$$
G=\{f \in C[0,1]: f(0)=0\},
$$

equipped with the norm $\|f\|_{\infty}=\max _{0 \leq t \leq 1}|f(t)|$. For $\alpha \in[1,2]$ let A be defined by

$$
A=\{f \in G:-1 \leq f(t) \leq \alpha-1 \quad \forall t \in[0,1]\} .
$$

a) Show that $\operatorname{diam}(A)=\alpha \cdot \operatorname{rad}(A)$ and $\operatorname{rad}(A)=1$.
b) Let G be defined as above, the solution operator is for $F=A$ defined by $S(f)=f$ and
$N(f)=\left(f\left(t_{1}\right), f\left(t_{2}\right), \ldots, f\left(t_{n}\right)\right)$, where $t_{i} \in[0,1], i=1, . ., n, t_{i} \neq t_{j}(i \neq j)$.
Show that $d(N, y)=\alpha \cdot r(N, y)$ and $r(N, y)=1$ for all $y \in N(F)$.

Exercise 3:

The problem of numerical differentiation is defined as follows:
Given are function values of f. Our aim is to approximate $f^{(k)}\left(t_{0}\right)$ in a given point t_{0}.
Formulate the problem of numerical differentiation as an IBC-problem, i.e., define F, G, S, and Λ in a suitable way. Is this a linear problem?

