

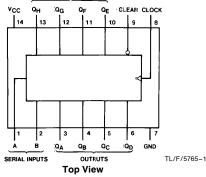
MM54HCT164/MM74HCT164 8-Bit Serial-in/Parallel-out Shift Register

General Description

The MM54HCT164/MM74HCT164 utilizes advanced silicon-gate CMOS technology. It has the high noise immunity and low consumption of standard CMOS integrated circuits. It also offers speeds comparable to low power Schottky devices.

This 8-bit shift register has gated serial inputs and CLEAR. Each register bit is a D-type master/slave flip flop. Inputs A & B permit complete control over the incoming data. A low at either or both inputs inhibits entry of new data and resets the first flip flop to the low level at the next clock pulse. A high level on one input enables the other input which will then determine the state of the first flip flop. Data at the serial inputs may be changed while the clock is high or low, but only information meeting the setup and hold time requirements will be entered. Data is serially shifted in and out of the 8-bit register during the positive going transition of the clock pulse. Clear is independent of the clock and accomplished by a low level at the CLEAR input.

The 54HCT/74HCT logic family is functionally as well as pin-out compatible with the standard 54LS/74LS logic family. All inputs are protected from damage due to static discharge by internal diode clamps to $V_{\rm CC}$ and ground.


MM54HCT/MM74HCT devices are intended to interface between TTL and NMOS components and standard CMOS devices. These parts are also plug-in replacements for LS-TTL devices and can be used to reduce power consumption in existing designs.

Features

- Typical propagation delay: 20 ns
- Low quiescent current: 40 µA maximum (74HCT Series)
- Low input current: 1 µA maximum
- Fanout of 10 LS-TTL loads
- TTL input compatible

Connection Diagram

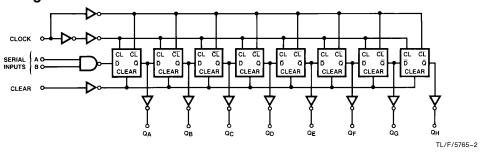
Dual-In-Line Package

Top View
Order Number MM54HCT164 or MM74HCT164

Truth Table

Inputs				Outputs				
Clear	Clear Clock A		В	Q_A	A Q _B		Q _H	
L	Х	Х	Χ	L	L		L	
Н	L	Х	Χ	Q _{AO}	Q_{BO}		Q_{HO}	
Н	1 ↑	Н	Н	Н	Q_{An}		Q_{Gn}	
Н	↑	L	Χ	L	Q_{An}		Q_{Gn}	
Н	1	Х	L	L	Q_{An}		Q_{Gn}	

H = High Level(steady state), L = Low Level(steady state)


X = Irrelevant (any input, including transitions)

↑ = Transition from low to high level.

 $Q_{AO},\,Q_{BO},\,Q_{HO}=$ the level of $Q_A,\,Q_B,$ or $Q_H,$ respectively, before the indicated steady state input conditions were established.

 $Q_{An},\,Q_{Gn}=$ The level of Q_A or Q_G before the most recent $\ \uparrow$ transition of the clock; indicated a one-bit shift.

Logic Diagram

Absolute Maximum Ratings (Notes 1 & 2)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage (V _{CC})	-0.5 to $+7.0$ V
DC Input Voltage (V _{IN})	-1.5 to $V_{CC} + 1.5V$
DC Output Voltage (V _{OUT})	-0.5 to $V_{CC} + 0.5V$
Clamp Diode Current (I _{IK} , I _{OK})	\pm 20 mA
DC Output Current, per pin (IOUT)	\pm 25 mA
DC V _{CC} or GND Current, per pin (I _{CC})	\pm 50 mA
Storage Temperature Range (T _{STG})	-65°C to +150°C

Power Dissipation (P_D)

(Note 3) 600 mW S.O. Package Only 500 mW

Lead Temperature (T_L)

(Soldering 10 seconds) 260°C

Operating Conditions

Supply Voltage (V _{CC})	Min 4.5	Max 5.5	Units V
DC Input or Output Voltage (V _{IN} , V _{OUT})	0	V_{CC}	V
Operating Temp. Range (T _A) MM74HCT MM54HCT	-40 -55	+85 +125	°C °C
Input Rise or Fall Times (t_r, t_f)		500	ns

DC Electrical Characteristics $V_{CC} = 5V \pm 10\%$ (unless otherwise specified)

Symbol	Parameter	Conditions	T _A =25°C		74HCT T _A = -40 to 85°C	54HCT T _A = -55 to 125°C	Units		
			Тур		Guaranteed Limits				
V _{IH}	Minimum High Level Input Voltage			2.0	2.0	2.0	V		
V _{IL}	Maximum Low Level Input Voltage			0.8	0.8	0.8	V		
V _{OH}	Minimum High Level Output Voltage	$ \begin{aligned} &V_{\text{IN}}\!=\!V_{\text{IH}} \text{ or } V_{\text{IL}} \\ & I_{\text{OUT}} =20~\mu\text{A} \\ & I_{\text{OUT}} =4.0~\text{mA}, V_{\text{CC}}\!=\!4.5\text{V} \\ & I_{\text{OUT}} =4.8~\text{mA}, V_{\text{CC}}\!=\!5.5\text{V} \end{aligned} $	V _{CC} 4.2 5.2	V _{CC} -0.1 3.98 4.98	V _{CC} -0.1 3.84 4.84	V _{CC} -0.1 3.7 4.7	V V		
V _{OL}	Maximum Low Level Voltage	$\begin{split} & \text{V}_{\text{IN}} \! = \! \text{V}_{\text{IH}} \text{or} \text{V}_{\text{IL}} \\ & \text{I}_{\text{OUT}} \! = \! 20 \mu\text{A} \\ & \text{I}_{\text{OUT}} \! = \! 4.0 \text{mA}, \text{V}_{\text{CC}} \! = \! 4.5 \text{V} \\ & \text{I}_{\text{OUT}} \! = \! 4.8 \text{mA}, \text{V}_{\text{CC}} \! = \! 5.5 \text{V} \end{split}$	0 0.2 0.2	0.1 0.26 0.26	0.1 0.33 0.33	0.1 0.4 0.4	V V		
I _{IN}	Maximum Input Current	V _{IN} =V _{CC} or GND		±0.1	±1.0	±1.0	μΑ		
Icc	Maximum Quiescent Supply Current	$V_{IN} = V_{CC}$ or GND $I_{OUT} = 0 \mu A$		8.0	80	160	μΑ		
		V _{IN} = 2.4V or 0.4V (Note 4)		1.0	1.3	1.5	mA		

Note 1: Absolute Maximum Ratings are those values beyond which damage to the device may occur.

Note 2: Unless otherwise specified all voltages are referenced to ground.

Note 3: Power Dissipation temperature derating — plastic "N" package: -12 mW/°C from 65°C to 85°C; ceramic "J" package: -12 mW/°C from 100°C to 125°C.

Note 4: This is measured per pin. All other inputs are held at V_{CC} ground.

AC Electrical Characteristics $\,V_{CC}=5V,\,T_{A}=25^{\circ}C,\,C_{L}=15\,pF,\,t_{r}=t_{f}=6\,ns$

Symbol	Parameter	Conditions	Тур	Guaranteed Limit	Units
f _{MAX}	Maximum Operating Frequency from Clock to Q	50% Duty Cycle Clock	55	35	MHz
t _{PHL} , t _{PLH}	Maximum Propagation Delay Clock to Q		17	27	ns
t _{PHL} , t _{PLH}	Maximum Propagation Delay from Clear to Q		23	38	ns
t _{REM}	Minimum Removal Time, Clear to Clock		3	6	ns
ts	Minimum Set Up Time Data to Clock	$t_H \geq$ 20 ns	6	13	ns
t _H	Minimum Hold Time Clock to Data	$t_S \ge 20 \text{ ns}$	1.5	5	ns
t _W	Minimum Pulse Width Clock, Preset or Clear		9	16	ns

AC Electrical Characteristics $V_{CC} = 5.0V \pm 10\%, C_L = 50 \text{ pF}, t_r = t_f = 6 \text{ ns}$ (unless otherwise specified)

Symbol	Parameter	Conditions	T _A = 25°C		74HCT T _A = -40°C to 85°C		54HCT T _A = -55°C to 125°C		Units
Cymbol	raidilletei		Тур	Max	Min	Max	Min	Max	Oille
f _{MAX}	Maximum Operating Frequency	50% Duty Cycle Clock	45	30		25		22	MHz
t _{PHL} , t _{PLH}	Maximum Propagation Delay from Clock to Q		20	30		38		45	ns
t _{PHL}	Maximum Propagation Delay from Clear to Q		26	41		51		61	ns
t _{REM}	Minimum Removal Time Clear to Clock		4	8		10		14	ns
ts	Minimum Setup Time Data to Clock	$t_{\text{H}} \geq$ 20 ns	7	15		19		23	ns
t _H	Minimum Hold Time Clock to Data	$t_S \ge 20 \text{ ns}$	1.5	5		5		5	ns
t _W	Minimum Pulse Width Clock, or Clear		10	18		22		27	ns
t _r , t _f	Maximum Input Rise and Fall Time			500		500		500	ns
t _{THL} , t _{TLH}	Maximum Output Rise and Fall Time			15		19		22	ns
C _{PD}	Power Dissipation Capacitance (Note 5)	(per flip-flop)	160						pF
C _{IN}	Maximum Input Capacitance		5	10		10		10	pF

Note 5: C_{PD} determines the no load dynamic power consumption, $P_D = C_{PD} \ V_{CC}^2 \ f + I_{CC} \ V_{CC}$, and the no load dynamic current consumption, $I_S = C_{PD} \ V_{CC} \ f + I_{CC}$. Note 6: Refer to back of the section for Typical MM54/74HC AC Switching Waveforms and Test Circuits.

Physical Dimensions inches (millimeters) 0.785 (19.939) MAX [14] [13] [12] [11] [10] [9] [8] 0.025 (0.635) RAD 0.220¹0.310 (5.588-7.874) 1 2 3 4 5 6 7 0.290-0.320 0.005 0.200 (D.127) MIN (5.080) MAX 0.020-0.060 (7.366-8.128) GLASS 0.060 ±0.005 (1.524 ±0.127) 0.180 (0.508 - 1.524)MA 0.008-0.012 10° MAX (0.203-0.305) 0.310-0.410 D.018 ±0.003 0.125-0.200 0.098 (7.874 - 10.41)(0.457 ±0,076) (3.175-5.080) (2.489) MAX BOTH ENDS 0.100 ±0.010 0.150 (3.81) J14A (REV G) MIN Order Number MM54HCT164J or MM74HCT164J NS Package J14A 14 13 12 12345/67 0.092 DIA 0.030 MAX (2.337) DIA (0.762) DEPTH OPTION 02 0.008 - 0.016 (0.203 - 0.406) TYP $\frac{0.125-0.150}{(3.175-3.810)}$ 0.075 ±0.015 (1.905 ±0.381) 0.014 - 0.023 (0.356 - 0.584) TYP 0.050 ± 0.010 (1.270 - 0.254) TYP 0.325 + 0.040 Order Number MM74HCT164N NS Package N14A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor

National Semiconducto Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018

National Semiconductor Europe

Fax: (+49) 0-180-530 85 86 Fax: (+49) U-18U-35U oo oo Email: onjwege tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 85 85 English Tei: (+49) 0-180-532 78 32 Français Tel: (+49) 0-180-532 93 58 Italiano Tel: (+49) 0-180-534 16 80 National Semiconductor

Hong Kong Ltd.
13th Floor, Straight Block,
Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960

National Semiconductor

Japan Ltd.
Tel: 81-043-299-2309
Fax: 81-043-299-2408