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Abstract

We study the complexity of Banach space valued integration. The input
data are assumed to be r-smooth. We consider both definite and indefinite
integration and analyse the deterministic and the randomized setting. We
develop algorithms, estimate their error, and prove lower bounds. In the
randomized setting the optimal convergence rate turns out to be related
to the geometry of the underlying Banach space.

Then we study the corresponding problems for parameter dependent
scalar integration. For this purpose we use the Banach space results and
develop a multilevel scheme which connects Banach space and parametric
case.

1 Introduction

While complexity of integration in the scalar case is well-studied, the Banach
space case has not been investigated before. We consider both definite and indef-
inite integration, develop randomized algorithms and analyse their convergence.
We also prove lower bounds and this way estimate the complexity of the integra-
tion problems. The results are related to the geometry of the underlying Banach
space. It turns out that the bounds are matching and the algorithms are of opti-
mal order for special spaces, including the L, spaces. For general Banach spaces
an arbitrarily small gap in the exponent of upper and lower bounds remains. We
also study the deterministic case and show that for arbitrary Banach spaces our
methods are of optimal order for any fixed choice of the random parameters.
The study of Banach space valued problems turns out to be crucial for the
development of algorithms and the complexity analysis for parameter dependent
problems, since such problems can be viewed as special cases of this general
context. To apply our Banach space results we need a way of passing from



Banach space valued to scalar information (function values). This is achieved
by a multilevel scheme which is based on the ideas of [2, 6]. As a result, we
obtain multilevel algorithms for the parametric problems and show that they are
of optimal order (in some cases up to a logarithmic factor).

The paper is organized as follows. In Section 2 we provide the needed notation
and technical tools. Section 3 contains algorithms for definite and indefinite
Banach space valued integration, their analysis and lower bounds. In Section 4
we present the multilevel approach and in Section 5 we apply the previous results
to the parametric problems.

2 Preliminaries

Let N = {1,2,...} and Ny = {0,1,2,...}. We introduce some notation and
concepts from Banach space theory needed in the sequel. For a Banach space X
the closed unit ball is denoted by By, the identity mapping on X by Ix, and the
dual space by X*. Given another Banach space Y, we let .Z(X,Y") be the space
of bounded linear mappings T : X — Y endowed with the canonical norm. If
X =Y, we write Z(X) instead of Z(X, X). Throughout the paper the norm
of X is denoted by || - ||. Other norms are usually distinguished by subscripts.
We assume all considered Banach spaces to be defined over the same scalar field
K=Ror K=C.

Let Q@ = [0,1]7 and let C"(Q, X) be the space of all r-times continuously
differentiable functions f : ) — X equipped with the norm
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For r = 0 we write C°(Q, X) = C(Q, X), which is the space of continuous X-
valued functions on Q). If X =K, we write C"(Q) and C(Q).
Let 1 < p < 2. A Banach space X is said to be of (Rademacher) type p, if
there is a constant ¢ > 0 such that for all n € N and x1,...,2, € X

n
i=1

where (g;)I", is a sequence of independent Bernoulli random variables with P{e; =
—1} =P{e; = +1} = 1/2 (we refer to [9, 7] for this notion and related facts). The
smallest constant satisfying (1) is called the type p constant of X and is denoted
by 7,(X). If there is no such ¢ > 0, we put 7,(X) = co. The space L,, (N, v) with
(N, v) an arbitrary measure space and p; < oo is of type p with p = min(py, 2).
Furthermore, there is a constant ¢ > 0 such that 7,(¢%) < c(log(n + 1))/2 for all
n € N. We will use the following result (see [7], Prop. 9.11).

p n
<Yl (1)
k=1



Lemma 1. Let 1 < p < 2, let X be a Banach space, n € N and (6;)7_, be
a sequence of independent X -valued random wvariables with E|0;||P < oo and
E6; =0 (=1,...,n). Then

n 1/p n
(EHZG p) < 27,(X) (ZEH@-IIP)

We need some notation and facts on tensor products of Banach spaces. For
details and proofs we refer to [1] and [8]. Let X ® Y be the algebraic tensor
product of Banach spaces X and Y. For z =" 7, ®y; € X ® Y define

1/p

n

Z (i u) (i, v) |-

i=1

Az) = sup

UeBx* s ’UGBy*

The injective tensor product X ®, Y is defined as the completion of X ® Y with
respect to the norm \. We use the canonical isometric identification

C(Q,X) =X @, C(Q), (2)
valid for arbitrary Banach spaces X, and in particular, for d > 1

Given Banach spaces X1, X5, Y7, Ys and operators Ty € Z(X1,Y1), Ty € Z(Xs,Y3),
the algebraic tensor product 77 ® Ty : X7 ® X5 — Y] ® Y5 extends to a bounded
linear operator 171 ® Ty € .Z(X; ®) Xo, Y] ®, Ys) with

177 @ Tall 2(xi@xxavi@av2) = 111z vy | T2l 2(xo,v2)- (3)

For r,m € N welet P1' € Z(C([0,1])) be composite with respect to the partition
of [0, 1] into m intervals of length m~! Lagrange interpolation of degree r. Let

Pt =Pt e 2(C((0, 1))

be its d-dimensional version. Setting I'{ = {% 0<i < k}d for k € N, it follows
that P interpolates on I'Y . Given a Banach space X, the X-valued versions
of the operators above are defined in the sense of identification (2) as

PraX — [y @ PrY (4)

This means that if P7?¢ is represented as

Prif= 3 fs)es (f€C(Q)

seld,,



for some ¢, € C(Q), then P7:%X has the representation

PriXf= 3" f(s)ps  (f€C(Q X))

serd,

We can obviously consider P74 also as an operator from /., (I'¢, |, X) to C(Q, X).
Given 7 € Ny and d € N, there are constants ¢y, co; > 0 such that for all Banach
spaces X and all m € N

IPrX | (e, < e, feBSUP 1f = Pr* flleox) < com™. (5)
CcT(Q,X)

The scalar case of (5) is well-known, which in turn readily implies the Banach
space case by considering functions f, € C(Q) given for f € C(Q,X) and u €
Bx- by fu(t) = (f(t),u) (t € Q).

We will work in the setting of information-based complexity theory (IBC), see
[12, 10]. For the precise notions used here we also refer to [3, 4]. An abstract
numerical problem is described by a tuple & = (F,G,S, K,A). The set F is
the set of input data, G is a normed linear space and S : F — G an arbitrary
mapping, the solution operator, which maps the input f € F to the exact solution
Sf. K is an arbitrary set and A is a set of mappings from F' to K — the class of
admissible information functionals.

A randomized algorithm for &2 is a family A = (Ay)ueq, where (2, X, P) is
the underlying probability space and each A, is a mapping A, : F — G. For w
fixed, A, : ' — G is a deterministic algorithm, that is, stands for a deterministic
process (depending on w) which uses values of information functionals on f € F
in an adaptive way. The result of the algorithm, A, f, is the approximation to S'f.
The parameter w incorporates all randomness used in the algorithm A = (A,),cq-
The error of A is defined as

G(S,A,F) = SupEHSf - AwaG
fer

Let card(A,, f) be the number of information functionals used by A, at input f.
We define the cardinality of A as

card(A, F') = supE card(A,, f).
fer

The central notion of IBC is the n-th minimal error, which is defined for n € Ny

as
(S, F)= inf e(5,AF).
" ( ’ ) card(A,F)<n ( T )
So e/**(S, F') is the minimal possible error among all randomized algorithms that
use (on the average) at most n information functionals.
We can introduce respective notions for the deterministic setting as a special
case of the above by considering only one-point probability spaces @ = {wp},
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which means that there is no dependence on randomness. Let ¢i°(S, F') denote
the n-th minimal error in this setting.

The complexity of definite scalar integration has been studied in numerous
papers, see [12, 10, 11] and the references therein. The complexity of scalar
indefinite integration was considered only recently in [5]. Let us summarize these
known results.

Let r € Ng, ¢ € {0,1}, and let S, be the operator of definite (v = 0), respec-
tively indefinite (¢ = 1) scalar integration (for the precise definitions see (8-9)
and the line after (10)). Then there are constants ¢;_4 > 0 such that for n € N
the following hold. The deterministic n-th minimal error satisfies

cin ™M < €3 (S,, Borg)) < can” Y, (6)
while the randomized n-th minimal errors fulfills
can T2 < er™(S,, Berg)) < cyn /A2, (7)

The Banach space cases of both problems have not been studied before. The
complexity of parametric definite integration was analysed in [6] (this result is
stated as part of Theorem 2 below), parametric indefinite integration has not
been investigated before.

Throughout the paper ¢, cy,cs,... are constants, which depend only on the
problem parameters r, d, but depend neither on the algorithm parameters n, [ etc.
nor on the input f. We emphasize that they do not depend on X either. The
same symbol may denote different constants, even in a sequence of relations.

3 Banach space valued integration

Let X be a Banach space, r € Ny, and let the definite integration operator
S¥:C(Q,X) — X be given by

S5 = /Q F(t)dt. (8)

Put F = Bergx), G = X, let K = X and A = A(Q,X) = {6 : t € Q}
with &;(f) = f(t). So here we consider X-valued information functionals. This
describes the definite integration problem

yo = (BCT(Q,X)vXa S(A)XvXaA(QaX))

The indefinite integration operator S : C(Q, X) — C(Q, X) is given by

(SENE) = | flwdu (teq), (9)

(0,¢]



with [0,t] = H?Zl[o,ti] for t = (t;,)4, € Q. Here we take G = C(Q, X), while

F.,K, and A are the same as above, so the indefinite integration problem is
P, = (Berigu), C(Q.X), 57, X, AQ, X)).
Note that in the sense of identification (2) we have
S¥X=Ix®S, (=0,1), (10)

where S, is the scalar version of SX, with X =K.

Now we present algorithms for the two integration problems (8) and (9). We
start with definite integration. Let n € N and let §; : Q@ — @ (i = 1,...,n)
be independent, uniformly distributed on () random variables on some complete
probability space (€2, 3, P). Set for f € C(Q, X)

vy 2 Xya (11)

and, if 7 > 1, put & = [n1/] and
AV = S (PRt ) + AYSX(f = PR ). (12)

We write A2 for the scalar case A%7¥. Finally we set A2™Y = (A%%) . In
5 5 B we

the scalar case for r = 0 this is just the standard Monte Carlo method and for

r > 1 the Monte Carlo method with separation of the main part. Note that for
reNp,neN we

AU = Iy @ AL, (13)

Let us turn to the error analysis for this algorithm. Fixing the random pa-

rameter w € ) means that we obtain a deterministic method, the error of which

we also consider.

Proposition 1. Let r € Ny and 1 < p < 2. Then there are constants ci_3 > 0
such that for all Banach spaces X, n € N, w € ) we have card(A?l’:;X) < cn
and for all f € C"(Q, X)

155" f = AREE I < con” " fller o) (14)
v 1 —r/d—
(BIISf = ASZX A" < esmp (O~ Fllerig 5, (15)

Proof. Let r =0 and f € C(Q, X). With

z/f@ﬁ—ﬂMM)
Q

SXf AOOXf— an

we have En;(w) =0,



and
()| < 2[[flle@.x)-

This implies (14) and, together with Lemma 1, also (15). The case r > 1 follows
directly from the case r = 0 and relation (5), since

SoCf — AU F = S(f - PR f) — AR (f — PN,

n,w
]

Next we consider indefinite integration. First we assume r = 0 and present the
Banach space version of the algorithm from Section 4 of [5]. It is a combination
of the Smolyak algorithm with the Monte Carlo method. Fix any m € N, m > 2
and L € Ng. For [ = (Iy,...,l5) € Nd we set |I| = I, + -+ + I and define
ULV, € Z(C(Q)) by

U = (P = Ppin) ® @ (P = Pl )@ P (16)

mld—1 mld—1-1 la?
with the understanding that P;L’L := 0. Furthermore, put
Vv, = Z U; (17)
TeNd, lll=L

and let
U =IxeU, Vi=IxeV (18)

be the respective Banach space versions. Set

1=(1,...,1), ml_:(mh’“_’mzd)’ T ;=T x. xT?

—— mld?
d
and for i = (iy,...,iq) € N* with 1 <7 <m! (component-wise inequalities)
=1 i =1 g
Ql,i - [ mh ’mlll X X { mld ’mld} :

So (Q17)1<j<mi is the partition of @ corresponding to the grid I', ;. Let &3 :
Q- Qr; (]Z | = L, 1 <i < m!) be independent random variables on a complete
probability space (€2, 3, P) such that &7 is uniformly distributed on Q;;. Define
Jiw € loo(T, 1, X) by

g =Y 1Qulf&;w) (el (19)

J:Qr;€[0,1]

mb»

with the convention that g;,(¢) = 0 if there is no j with Q;; C [0,¢] (that is, if
some component of ¢ is zero). Finally we put

L=2d-1 (20)



and, given n € N,

m = [(n + 1)%] (21)
If r =0, we define
AKX = Y U (22)
leNg, |l|=L

In the case r > 1 we put k = (nl/‘ﬂ and
Al rXf SX( Tde) + Aylz’7(2‘;X(f . Pkr,d,Xf)' (23>

Finally set A,I;T’X = (A%ZX)
w €

veq- Similarly to (13) we have for 7 € No, n € N,

AITX —I ®A1r

n,w?

(24)

with A} = AL7E. The scalar case of the following result for 7 = 0 has been
shown in [5]. We use the tensor product technique to carry over parts of the
proof.

Proposition 2. Let r € Ny, 1 < p < 2. Then there are constants c1_3 > 0 such
that for all Banach spaces X, n € N, w € Q0 we have card(A}l’;;X) < ¢n and for
all f € C"(Q, X)

157 = ALs ey < en™ | fllerox (25)
(E[IS¥f = Ay Fllto. X)) < (X)) fllerx). (26)

Proof. We start with the case r = 0, where we have

157 f =A™ fllex
< ST F = VEST flloxy + IVEST f = Ayl Fllo.x)- (27)
The first term can be estimated using
1S = Vi' STl z(coixy < em™ 7, (28)

the scalar case of which is Lemma 4.2 of [5]. The Banach space case follows by
taking tensor products and using (10) and (18). Now we consider the second
term. We have

IVESKf = A flloxy < Y IUXSKF = U giallecexy  (29)

leNg, |l|=L
and
107 ST f = U grullex
T T
< ctréllgxf f(t)dt—i Z |Qf,5|f(£i,j)) ¢ mgxl 72 ni;| (30)
mt =104 7Qi 510, == g
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with

;= o fO)dt — Q51 f(&5) T <j<ml). (31)

The random variables {n;; : 1 < j < mz} are independent, of mean zero, and
satisfy

el < 20Qusll fllox) = 2m "Il flleq.x)- (32)

Combining (20-21) and (27-32), we obtain (25) for r = 0.
For p > 1 we get from Lemma 4.3 of [5] (a simple generalization of Doob’s
inequality, the proof of which literally carries over to the Banach space case)

»\ 1/p »\ 1/p
o | S <GS ul)"
e g <<l
Moreover, Lemma 1 gives
p\1/p 1/p
E] X ms|) " <2n@)( X Elmgl) (34)

1<l 1<<i

(E max H i;m,j p)l/p < CTp(X)< > EHnl,ij)l/p- (35)

1<i<m! ~_ .
- <j<i 1<5<i

The same relation also holds for p = 1 by the triangle inequality. We obtain from
(29-30), (32), and (35)

EIVESTf = AR Fltgu)"” < en(X)m™ P8 fllogx). (36)

n,w

Now relation (26) for r = 0 follows from (20-21), (27-28), and (36).
As in the proof of Proposition 1 the case r > 1 follows from the case r = 0
and (5), since

SYF = AR =S¥ = P ) = AR - PV

n,w

By (16-17) and (19-23) the number of function values used in AL"X f is

n,w

ck® + ¢ E mh . ml < en.
lll=L



Theorem 1. Let r € Ny, ¢ € {0,1}, 1 < p < 2. Then there are constants
c1—4 > 0 such that for all Banach spaces X and n € N the following hold. The
deterministic n-th minimal error satisfies

cln*T/d S eget(SLX, BC’"(Q,X)) S Canr/d.

Moreover, if X is of type p and px is the supremum of all p; such that X is of
type p1, then the randomized n-th minimal errors fulfills

cyn /A1 /X < eran(SX, Berg,x)) < C4Tp(X)n_T/d_1+1/p.

Proof. The upper bounds follow from Propositions 1 and 2. Since definite in-
tegration is a particular case of indefinite integration in the sense that Sy f =
(S f) (1), it suffices to prove the lower bound for Sg. The lower bounds for the
deterministic setting and for the randomized setting with px = 2 follow from the
respective scalar cases (6) and (7), since trivially every Banach space X over K
contains an isometric copy of K.

It remains to show the lower bound for the randomized setting for Banach
spaces with px < 2. Any such Banach space must be infinite dimensional (a finite
dimensional space X always has py = 2). Let n € N and let £ € N be such that

(k—1)* < 8n < k% (37)

The Maurey-Pisier Theorem (see [9], Th. 2.3) implies that for every k € N there
is a subspace E;, C X of dimension £ and an isomorphism 7 : Elgi — FEj with

IT|| <1 and |77 < 2. Let 2; = Te;, where (e;)%’, is the unit vector basis of
d o0

ey Let gb € C*(R?) be such that ¥ (t) > 0 for ¢t € (0,1)¢ and suppe C [0, 1]<.
Let (Q;)%, be the partition of Q into closed cubes of side length k~! of disjoint
interior, let ¢; be the point in @); with minimal coordinates and define ¢; € C(Q)
by

It is readily checked that there is a constant ¢y > 0 such that for all (ozz-)fil S
[_17 l]kd

k‘d

cok™" Z ;T € BC”I‘(Q,X).

=1

Put f; = cok "z1); and o = wi(t)dt. Then for (ai)fil c R¥

= Cokir

iaimi/Qz/zi(t)dtH

d d 1/pX

H iaisg(fz’




Next we use Lemma 5 and 6 of [3] with K = X (Lemma 6 is formulated for
K =R, but directly carries over to K = X) and (37) to obtain

1
ran SX,B - > : EH iSX )
e (50, Bergx)) 2 41g{1,...,krf%}|r}\2kd—4n iezlg !

—r—(1-1 d —r/d—1+1
> ck" (1-1/px) > cn r/d—1+ /px,

where (51)5’11 is a sequence of independent centered Bernoulli random variables.
O

Note that the bounds in the randomized cases of Theorem 1 are matching
up to an arbitrarily small gap in the exponent. In some cases, they are even of
matching order.

Corollary 1. Let r € No, 1 < p < 2, v € {0,1}. Then there are constants
c1,co > 0 such that the following hold. Let X be a Banach space which s of type

p and moreover, satisfies px = p (that is, the supremum of types is attained).
Then for alln € N

Clnfr/d71+1/10 < e;an(S;X7BCT(Q7X)) < CQTp(X)nir/di:H»l/p.

This holds, in particular, for spaces of type 2 with p =2 and, if 1 < p; < o0, for
spaces X = L, (N,v), where (N,v) is some measure space, with p = min(py, 2).

For general Banach spaces X upper and lower bounds of matching order of
e (S, Borg,x)) (¢ = 0,1) remain an open problem.

4 A multilevel procedure

In the previous section we considered Banach space valued information function-
als. Now we develop a scheme which will serve as a bridge between the Banach
space and the scalar case. It is based on the multilevel Monte Carlo approach
from [2, 6]. Assume that a Banach space Y is continuously embedded into the
Banach space X, and let J be the embedding map. We shall identify elements
of Y with their images in X. For r, 0 € Ny we consider integration of functions
from the set
Ber@x) N Bee@y)-

Let (T})2, C Z(X) (this is intended to be a sequence which approximates the
embedding J) and set for | € Ny

R = Ti®lcg € Z(C(Q,X)). (38)

The operator R; is just the pointwise application of 7; in the sense that for
feC(@Q,X)andt € Q we have (R f)(t) = T;f(t). Fix any ly, {1 € Ny, lop <[4,
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Ny - -1y, € N and define for ¢« € {0,1} and f € C(Q,X) an approximation
Aﬁf)f to SX f as follows:
I
AQS = ALRGS+ Y A (Ri— Riy)f (39)
I=lp+1

and AW = (AE:))weg. It follows from (13), (24), and (38) that

AY = T, @AY+ Z (T — Ti—1) ® A4@ (40)

np,w'
I=lp+1

Furthermore, put
X =y (TU(X)) (1€Ng), Xiay=cx(T—Ti)(X)) (€N),  (41)

where clx denotes the closure in X. In particular, X; and X;_;; are endowed
with the norm induced by X. Given a Banach space Z, we mtroduce the notation
Go(Z) = Z and G1(Z) = C(Q, Z). Now we estimate the error of AY on Berg,x)N
BC’Q(Q7Y)
Proposition 3. Let 1 < p < 2, r,p € Ny, and ¢ € {0,1}. Then there are
constants ¢y, co > 0 such that for all Banach spaces XY, and operators (1})7°,
as above, for all ly,l; € Ng with ly < 11, and for all (nl)ﬁlzlo C N the so-defined
algorithm AY satisfies

sup IS f — AL f|

fE€Bcrg,x)NBce(q,v)

G.(X)

< N = Tod |z + allTio e ng
5t
+ar Y T =Tl gy m @ (weQ) (42)
I=lp+1
and
x @) £1p 1/p
sup (ENSXF = ADFIZ, )
f€Bcr(q@,x)NBce(q,v)
< N = Ty T 2wy + camo(Xig) | T |2y, P
I
ter Y (X )T = Toa) Tz @42 (43)
I=lp+1
Proof. Let f € Berg,x) N Bee(g,y)- From (39) we get

IS5 f — ALY
S HSLXf_SLXRll

x) + [1SX Ry f A”XRZO

Gu(X1y)

l1
+ > S (R = R f = A (R = R fllewxny - (4)

I=lp+1

12



We have

1SXf = SXRy, flle.x) < 15 | zcx)c.ollf — R fllewo.x)
< ||J- T11J||$(Y7X)Hf||c ov) < =T, J|| 2. x)- (45)

Furthermore, by Propositions 1 and 2

IISXRzOf A Rig

G.(Xy) ) < ano “RlofHCT(Q,XlO)

—r/d
crx) < el Tiolleoomn (46)

< ano HTloHaf(X)Hf’

and similarly,

nyg,w

1/p T
<||SXRlof A”XRlofHG (Xi) ) < CTP(Xlo)HTlo”i” /d e -(47)
For Iy < | <l; we obtain

ISX (R — Riq) f — A2 (R — Rizq)

< ony -e/d (R — Ri-1) fllce@xi—1)
< o T = Tz leswy < ell(Th = Tia) Tl zvom; @ (48)

(X1-1,1)

and
E (I1SX(R, - R A X (R — Ry f|IP v
157 (R = Ria) f = A7 (B — Riea) fllg, o,
< en(X )T = Tioa) vy @7, (49)
Combining (44-49) yields the result. O

5 Scalar parametric case

In this section we apply the previous results to parametric definite and indefinite
integration. Let d,d; € N, Q; = [0,1]%. We consider numerical integration of
functions depending on a parameter s € (J;. The definite parametric integration
operator % : C(Q1 x Q) — C(Q4) is given by

(A f)(s /fst (s € Q).

We put F' = Berg,xq), the set K is the scalar field K, and A is the following
class of information functionals A(Q x Q,K) = {05 : s € Q1,t € Q} where
dst(f) = f(s,t). This is just standard information consisting of values of f.
Hence, the definite parametric integration problem is

HO (BC’" Q1XQ)> (Ql) %7K7A(Q1 X Q7K))

13



The indefinite parametric integration operator . : C(@Q1 X Q) — C(Q1 X Q)
is given by

()0 = | fls,u)du (s €Qute@).

[0,¢]
Here F', K, A are chosen to be the same as above, so the indefinite parametric
integration problem is described by

I} = (Ber(@ix@), C(Q1 x Q), 71, K, A(Q1 x Q,K)).

We can relate these problems to the previously considered Banach space val-
ued ones as follows. Setting X = C(Q1), we have

C(Q1x Q) =C(Q1) @ C(Q) =X @\ C(Q) = C(Q, X)
and .7, = S°@ (L, = 0,1). Moreover, referring to the notation of Section 4, we
put Y = C"(Q;) and g = 0, which gives
Berixq) & Ber@.c@n) N Bo@.er@) = Ber@x N Bo@y)-
Let 7 = max(r, 1) and define for [ € Ny
T, = P € Z(C(Qn)). (50)
By (5), l
ITillzc@y < e 1= TiJlzer@c@y < @27, (51)

where J : C™(Q1) — C(Q1) is the embedding. The algorithms A% defined in
(39) and equivalently (40) turn into

AY = PRh oA, Z (P” @ _ pr ffl) ® AL (52)
= lo+1
Let us note that (52) together with the definitions of Py* and A47, imply the

following representation of AY. There are sii € Q1 tijw € Q, v € C(Q1),
¢1(Lg)w e Kif =0, @/)l(;)w € C(Q)if 1 =1, M; < 21! and N; < cny such that

W M; N;
SINTS T Flsiitige) pa®@ U, (f € C(Q1Lx Q) w e Q). (53)

I=ly i=1 j=1

The particular shape of these functions can be read from the definitions (11-12)
and (16-23), for more details in the case ¢ = 1 see also [5]. It follows that

5
card(AW) < cZnZlel (we Q). (54)
I=lo

Now we estimate the error of AY. Recall the notation Go(C(Q1)) = C(Qy) and
G1(C(Q1)) = C(Q1 x Q).
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Proposition 4. Let r € Ny, d,d; € N, + € {0,1}. There are constants ¢c;_4 > 0
such that the following hold. For each n € N there are ly € Ny and n;, € N such
that with 1, = ly we have card(Afj)) < cyn and

sup < cgn_ﬁ (55)

fEBCT(Ql xQ)

for allw € Q). Moreover, for each n € N withn > 2 there is a choice of ly,l; € Ny,
(nl)l:l C N such that card(A ) <esn (we Q) and

1/2
swp (B AS = ADFlE o)
fEBCT(leQ)
__2r4d 1
n 2t (logn)z if r/dy > 1/2
< e q n2(logn)? if r/dy=1/2 (56)

n_ﬁ(logn)ﬁ if r/dy <1/2.

Proof. Let n € N and put

. |logyn B dy o,
o[l | -

Furthermore, let I; € Ny, Iy <1y <I*, dp,01 > 0 to be fixed later on and define

ny, = 2d1(l*—lo)’ n; = [le(l*—l) So(l=lo)=61(li— l)—‘ (I=1y+1,...,1). (58)

Then by (54) the cost fulfills

ll ll
card(Afj)) < cZnﬂdll < 24V 4 Z 9" =do(I—~lo)=01(l1—1)

1=lp I=lp+1
n if 9g>0o0rd; >0
S C n if (50 = (51 =0 and ll = l() (59)

nlogn if 6y=09; =0and [ > .

To show (55), we put l; = lp and get from (42) of Proposition 3, (51), and
(57-58)

sup || f — AY flle.con)
F€Bor(Q,%Q)

rdll

T o d7
o [* + 02—7d1(l —lo) < 27 d < ep d+d17

< 02_”0 -+ CTLl—Od < 2 d+d1

which together with (59) gives (55).
Now we turn to the proof of (56) and assume, in addition, that n > 2. Observe
that by (41) and (50)

Xy = P (C(@1)) = Py (E(T)50)) (60)

15



d . . . . .
and P EOO(F;?QZ) — X is an isomorphism which satisfies

17 < e (IR =1

Indeed, the first estimate is just the first part of (5), the second estimate is a
consequence of the fact that the inverse of the interpolation operator is just the
restriction of functions in X to FfllQZ. It follows that

(X)) < ena (£ (T8,)) < el + )2, (61)

By (60), X;—; C X, for [ > 1, therefore (41) implies that we also have X;_1; C X,
thus

TQ(XI_Ll) S C(l + 1)1/2. (62)
For brevity we denote
, 1/2
E:= suwp (E|Sf—AYS] 2G’L(C(Q1)))
feBer(qxq)

By (43) of Proposition 3, (51), and (61-62)

l
E < 2™ —|—C(l0+1)1/2n;0”d71/2+c Z (l+1)1/227rzn;1/2
I=lp+1

1
S CQ—Tll+C(l*+1)1/22—(r/d+1/2)d1(l*—lo)+C(l*+1)1/2 Z 2—u(l)7 (63)
I=lp+1

where we defined
We have from (57)

’I“dl
— " =1y >
1) 2

T'dl d dl

d di+d  Tdixd =T

consequently,

2—(1"/d+1/2)d1(l*—lo) < CZ—Tlo—dl(l*—l())/Q < CQ—M(lo)’

which together with (63) gives

l1
E < ™4+ 1)) 2710, (65)
l=lo

We rewrite (64) as
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If r > dy/2, we set §; = 0, l; = [* and choose §y > 0 in such a way that
r —d9/2 > di /2. From (57), (65), and (66) we obtain

l*
E S C2—Tl* _|_ C(l* _|_ 1)1/2 Z2—Tlo—(r—§0/2)(l—l0)—d1(l*—l)/?
I=lo

< @27 4 o(IF 4 1) /2o ()2
i _ (r4d/2)d) s
< 2 et + 1)V (67)
_ (r4d/2)dy 54 _r+d/2
< e+ 1)V @ U < enT @A (log )2, (68)

where in the step from (67) to (68) we used % < r, which follows from the

assumption r > d; /2. This together with (59) proves (56) for r > d; /2.
If r=dy/2, we set 6o = §; = 0, [; = [* and get from (57), (65), and (66)

l*
E < 2 4ol + 1)1/2Zerlofr(lflo)fdl(l*fl)ﬂ
1=l
< e(I* 4 1)322700 2 < en7 2 (log n)?/2.
Combining this with (59) and transforming nlogn into n gives the respective
estimate (56) in this case.
Finally, if » < d;/2, we set 09 = 0, choose d; > 0 in such a way that (d; —
d1)/2 > r and put
=1 = [di' log,y (I + 1)] . (69)

Consequently,
logo(I" + 1) < di(I" — 1y) < logy(I" + 1) + d;. (70)
Also observe that there is a constant ¢y € N such that for n > ¢
lo <1 — [di M og,y (I + 1)] < 1. (71)

Since for n < ¢q the estimate (56) follows trivially from (65) by a suitable choice
of the constant, we can assume n > ¢y, and thus (71). By (57), (65-66), (69),
and (70)

C27Tl1 +C(l* + 1)1/2l212rl0d1(1*ll)/2r(ll0)(d1§1)(l1l)/2
I=lo

02—7‘11 +C(l* + 1)1/22—7‘lo—d1(l*—l1)/2—7’(l1—lo)

C277‘l1 +C<l* + 1)1/2277‘[17(10g2(l*+1))/2

C2—rl1 — C2—rl*+r(l*—ll) < Cz—rl*+(r/d1)log2(l*+1)

ol (l* 4 1)r/d1 < Cn_r/dl(log n)?‘/dl_

E

IN

IA N IA

With this, (56) is now a consequence of (59).
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The following theorem gives the complexity of parametric integration. The
case of definite parametric integration is already contained in [6] (with a slightly
better upper bound in the limit case r/d; = 1/2: (logn)®? instead of (logn)?).
The case of indefinite parametric integration is new.

Theorem 2. Letr € Ny, d,dy € N, v € {0,1}. Then there are constants ¢;_g > 0
such that for all n € N with n > 2 the deterministic n-th minimal error satisfies

cn d1+d < edet(y BCT Q1><Q)) < Com d1+d

For the randomized n-th minimal error we have the following: If r/dy > 1/2, then

2r4d 2r+d

eyn” T (log n)E < €(.F,, Boring) < can” 2479 (logn)?,

l\)\»—‘

if r/dy = 1/2, then
esn 2 (logn)? < e (.S, Bor@ixq)) < cen” 2 (logn)?
and if r/dy < 1/2, then

crn” @ (logn) @ < (.S, Bor @QixQ)) < csn “d (log n)#
Proof. The upper bounds follow from Proposition 4. For the lower bounds it
suffices to consider parametric definite integration. But these are contained in
Theorem 2.4 of [6] (note a misprint there, case r < dy/2: dy is to be replaced by
dy).

[

Let us finally note that the choice of Y = C"(Q;) and ¢ = 0 in this section
was motivated by our application to the class C"(Q x @), but is, of course, not
the only interesting one. We leave other cases to future consideration.
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