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Abstract

We study the complexity of Banach space valued integration. The input
data are assumed to be r-smooth. We consider both definite and indefinite
integration and analyse the deterministic and the randomized setting. We
develop algorithms, estimate their error, and prove lower bounds. In the
randomized setting the optimal convergence rate turns out to be related
to the geometry of the underlying Banach space.

Then we study the corresponding problems for parameter dependent
scalar integration. For this purpose we use the Banach space results and
develop a multilevel scheme which connects Banach space and parametric
case.

1 Introduction

While complexity of integration in the scalar case is well-studied, the Banach
space case has not been investigated before. We consider both definite and indef-
inite integration, develop randomized algorithms and analyse their convergence.
We also prove lower bounds and this way estimate the complexity of the integra-
tion problems. The results are related to the geometry of the underlying Banach
space. It turns out that the bounds are matching and the algorithms are of opti-
mal order for special spaces, including the Lp spaces. For general Banach spaces
an arbitrarily small gap in the exponent of upper and lower bounds remains. We
also study the deterministic case and show that for arbitrary Banach spaces our
methods are of optimal order for any fixed choice of the random parameters.

The study of Banach space valued problems turns out to be crucial for the
development of algorithms and the complexity analysis for parameter dependent
problems, since such problems can be viewed as special cases of this general
context. To apply our Banach space results we need a way of passing from
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Banach space valued to scalar information (function values). This is achieved
by a multilevel scheme which is based on the ideas of [2, 6]. As a result, we
obtain multilevel algorithms for the parametric problems and show that they are
of optimal order (in some cases up to a logarithmic factor).

The paper is organized as follows. In Section 2 we provide the needed notation
and technical tools. Section 3 contains algorithms for definite and indefinite
Banach space valued integration, their analysis and lower bounds. In Section 4
we present the multilevel approach and in Section 5 we apply the previous results
to the parametric problems.

2 Preliminaries

Let N = {1, 2, . . . } and N0 = {0, 1, 2, . . . }. We introduce some notation and
concepts from Banach space theory needed in the sequel. For a Banach space X
the closed unit ball is denoted by BX , the identity mapping on X by IX , and the
dual space by X∗. Given another Banach space Y , we let L (X, Y ) be the space
of bounded linear mappings T : X → Y endowed with the canonical norm. If
X = Y , we write L (X) instead of L (X,X). Throughout the paper the norm
of X is denoted by ‖ · ‖. Other norms are usually distinguished by subscripts.
We assume all considered Banach spaces to be defined over the same scalar field
K = R or K = C.

Let Q = [0, 1]d and let Cr(Q,X) be the space of all r-times continuously
differentiable functions f : Q→ X equipped with the norm

‖f‖Cr(Q,X) = max
0≤j≤r, t∈Q

‖f (j)(t)‖.

For r = 0 we write C0(Q,X) = C(Q,X), which is the space of continuous X-
valued functions on Q. If X = K, we write Cr(Q) and C(Q).

Let 1 ≤ p ≤ 2. A Banach space X is said to be of (Rademacher) type p, if
there is a constant c > 0 such that for all n ∈ N and x1, . . . , xn ∈ X

E
∥∥∥ n∑
i=1

εixi

∥∥∥p ≤ cp
n∑
k=1

‖xi‖p, (1)

where (εi)
n
i=1 is a sequence of independent Bernoulli random variables with P{εi =

−1} = P{εi = +1} = 1/2 (we refer to [9, 7] for this notion and related facts). The
smallest constant satisfying (1) is called the type p constant of X and is denoted
by τp(X). If there is no such c > 0, we put τp(X) =∞. The space Lp1(N , ν) with
(N , ν) an arbitrary measure space and p1 < ∞ is of type p with p = min(p1, 2).
Furthermore, there is a constant c > 0 such that τ2(`n∞) ≤ c(log(n+ 1))1/2 for all
n ∈ N. We will use the following result (see [7], Prop. 9.11).
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Lemma 1. Let 1 ≤ p ≤ 2, let X be a Banach space, n ∈ N and (θi)
n
i=1 be

a sequence of independent X-valued random variables with E‖θi‖p < ∞ and
E θi = 0 (i = 1, . . . , n). Then(

E
∥∥∥ n∑
i=1

θi

∥∥∥p)1/p

≤ 2τp(X)

(
n∑
k=1

E ‖θi‖p
)1/p

.

We need some notation and facts on tensor products of Banach spaces. For
details and proofs we refer to [1] and [8]. Let X ⊗ Y be the algebraic tensor
product of Banach spaces X and Y . For z =

∑n
i=1 xi ⊗ yi ∈ X ⊗ Y define

λ(z) = sup
u∈BX∗ , v∈BY ∗

∣∣∣ n∑
i=1

〈xi, u〉 〈yi, v〉
∣∣∣.

The injective tensor product X ⊗λ Y is defined as the completion of X ⊗ Y with
respect to the norm λ. We use the canonical isometric identification

C(Q,X) = X ⊗λ C(Q), (2)

valid for arbitrary Banach spaces X, and in particular, for d > 1

C([0, 1]d) = C([0, 1])⊗λ C([0, 1]d−1) = C([0, 1])⊗λ · · · ⊗λ C([0, 1]).

Given Banach spacesX1, X2, Y1, Y2 and operators T1 ∈ L (X1, Y1), T2 ∈ L (X2, Y2),
the algebraic tensor product T1 ⊗ T2 : X1 ⊗X2 → Y1 ⊗ Y2 extends to a bounded
linear operator T1 ⊗ T2 ∈ L (X1 ⊗λ X2, Y1 ⊗λ Y2) with

‖T1 ⊗ T2‖L (X1⊗λX2,Y1⊗λY2) = ‖T1‖L (X1,Y1)‖T2‖L (X2,Y2). (3)

For r,m ∈ N we let P r,1
m ∈ L (C([0, 1])) be composite with respect to the partition

of [0, 1] into m intervals of length m−1 Lagrange interpolation of degree r. Let

P r,d
m = ⊗dP r,1

m ∈ L (C([0, 1]d))

be its d-dimensional version. Setting Γdk =
{
i
k

: 0 ≤ i ≤ k
}d

for k ∈ N, it follows
that P r,d

m interpolates on Γdrm. Given a Banach space X, the X-valued versions
of the operators above are defined in the sense of identification (2) as

P r,d,X
m = IX ⊗ P r,d

m . (4)

This means that if P r,d
m is represented as

P r,d
m f =

∑
s∈Γdrm

f(s)ϕs (f ∈ C(Q))
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for some ϕs ∈ C(Q), then P r,d,X
m has the representation

P r,d,X
m f =

∑
s∈Γdrm

f(s)ϕs (f ∈ C(Q,X)).

We can obviously consider P r,d,X
m also as an operator from `∞(Γdrm, X) to C(Q,X).

Given r ∈ N0 and d ∈ N, there are constants c1, c2 > 0 such that for all Banach
spaces X and all m ∈ N

‖P r,d,X
m ‖L (C(Q,X)) ≤ c1, sup

f∈BCr(Q,X)

‖f − P r,d,X
m f‖C(Q,X) ≤ c2m

−r. (5)

The scalar case of (5) is well-known, which in turn readily implies the Banach
space case by considering functions fu ∈ C(Q) given for f ∈ C(Q,X) and u ∈
BX∗ by fu(t) = 〈f(t), u〉 (t ∈ Q).

We will work in the setting of information-based complexity theory (IBC), see
[12, 10]. For the precise notions used here we also refer to [3, 4]. An abstract
numerical problem is described by a tuple P = (F,G, S,K,Λ). The set F is
the set of input data, G is a normed linear space and S : F → G an arbitrary
mapping, the solution operator, which maps the input f ∈ F to the exact solution
Sf . K is an arbitrary set and Λ is a set of mappings from F to K – the class of
admissible information functionals.

A randomized algorithm for P is a family A = (Aω)ω∈Ω, where (Ω,Σ,P) is
the underlying probability space and each Aω is a mapping Aω : F → G. For ω
fixed, Aω : F → G is a deterministic algorithm, that is, stands for a deterministic
process (depending on ω) which uses values of information functionals on f ∈ F
in an adaptive way. The result of the algorithm, Aωf , is the approximation to Sf .
The parameter ω incorporates all randomness used in the algorithm A = (Aω)ω∈Ω.
The error of A is defined as

e(S,A, F ) = sup
f∈F

E ‖Sf − Aωf‖G.

Let card(Aω, f) be the number of information functionals used by Aω at input f .
We define the cardinality of A as

card(A,F ) = sup
f∈F

E card(Aω, f).

The central notion of IBC is the n-th minimal error, which is defined for n ∈ N0

as
eran
n (S, F ) = inf

card(A,F )≤n
e(S,A, F ).

So eran
n (S, F ) is the minimal possible error among all randomized algorithms that

use (on the average) at most n information functionals.
We can introduce respective notions for the deterministic setting as a special

case of the above by considering only one-point probability spaces Ω = {ω0},
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which means that there is no dependence on randomness. Let edet
n (S, F ) denote

the n-th minimal error in this setting.
The complexity of definite scalar integration has been studied in numerous

papers, see [12, 10, 11] and the references therein. The complexity of scalar
indefinite integration was considered only recently in [5]. Let us summarize these
known results.

Let r ∈ N0, ι ∈ {0, 1}, and let Sι be the operator of definite (ι = 0), respec-
tively indefinite (ι = 1) scalar integration (for the precise definitions see (8–9)
and the line after (10)). Then there are constants c1−4 > 0 such that for n ∈ N
the following hold. The deterministic n-th minimal error satisfies

c1n
−r/d ≤ edet

n (Sι, BCr(Q)) ≤ c2n
−r/d, (6)

while the randomized n-th minimal errors fulfills

c3n
−r/d−1/2 ≤ eran

n (Sι, BCr(Q)) ≤ c4n
−r/d−1/2. (7)

The Banach space cases of both problems have not been studied before. The
complexity of parametric definite integration was analysed in [6] (this result is
stated as part of Theorem 2 below), parametric indefinite integration has not
been investigated before.

Throughout the paper c, c1, c2, . . . are constants, which depend only on the
problem parameters r, d, but depend neither on the algorithm parameters n, l etc.
nor on the input f . We emphasize that they do not depend on X either. The
same symbol may denote different constants, even in a sequence of relations.

3 Banach space valued integration

Let X be a Banach space, r ∈ N0, and let the definite integration operator
SX0 : C(Q,X)→ X be given by

SX0 f =

∫
Q

f(t)dt. (8)

Put F = BCr(Q,X), G = X, let K = X and Λ = Λ(Q,X) = {δt : t ∈ Q}
with δt(f) = f(t). So here we consider X-valued information functionals. This
describes the definite integration problem

P0 = (BCr(Q,X), X, S
X
0 , X,Λ(Q,X)).

The indefinite integration operator SX1 : C(Q,X)→ C(Q,X) is given by

(SX1 f)(t) =

∫
[0,t]

f(u)du (t ∈ Q), (9)
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with [0, t] =
∏d

i=1[0, ti] for t = (ti)
d
i=1 ∈ Q. Here we take G = C(Q,X), while

F ,K, and Λ are the same as above, so the indefinite integration problem is

P1 = (BCr(Q,X), C(Q,X), SX1 , X,Λ(Q,X)).

Note that in the sense of identification (2) we have

SXι = IX ⊗ Sι (ι = 0, 1), (10)

where Sι is the scalar version of SXι , with X = K.
Now we present algorithms for the two integration problems (8) and (9). We

start with definite integration. Let n ∈ N and let ξi : Ω → Q (i = 1, . . . , n)
be independent, uniformly distributed on Q random variables on some complete
probability space (Ω,Σ,P). Set for f ∈ C(Q,X)

A0,0,X
n,ω f =

1

n

n∑
i=1

f(ξi(ω)) (11)

and, if r ≥ 1, put k =
⌈
n1/d

⌉
and

A0,r,X
n,ω f = SX0 (P r,d,X

k f) + A0,0,X
n,ω (f − P r,d,X

k f). (12)

We write A0,r
n,ω for the scalar case A0,r,K

n,ω . Finally we set A0,r,X
n =

(
A0,r,X
n,ω

)
ω∈Ω

. In
the scalar case for r = 0 this is just the standard Monte Carlo method and for
r ≥ 1 the Monte Carlo method with separation of the main part. Note that for
r ∈ N0, n ∈ N, ω ∈ Ω

A0,r,X
n,ω = IX ⊗ A0,r

n,ω. (13)

Let us turn to the error analysis for this algorithm. Fixing the random pa-
rameter ω ∈ Ω means that we obtain a deterministic method, the error of which
we also consider.

Proposition 1. Let r ∈ N0 and 1 ≤ p ≤ 2. Then there are constants c1−3 > 0
such that for all Banach spaces X, n ∈ N, ω ∈ Ω we have card

(
A0,r,X
n,ω

)
≤ c1n

and for all f ∈ Cr(Q,X)

‖SX0 f − A0,r,X
n,ω f‖ ≤ c2n

−r/d‖f‖Cr(Q,X) (14)(
E ‖SX0 f − A0,r,X

n,ω f‖p
)1/p ≤ c3τp(X)n−r/d−1+1/p‖f‖Cr(Q,X). (15)

Proof. Let r = 0 and f ∈ C(Q,X). With

ηi(ω) =

∫
Q

f(t)dt− f(ξi(ω))

we have E ηi(ω) = 0,

SX0 f − A0,0,X
n,ω f =

1

n

n∑
i=1

ηi(ω)
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and
‖ηi(ω)‖ ≤ 2‖f‖C(Q,X).

This implies (14) and, together with Lemma 1, also (15). The case r ≥ 1 follows
directly from the case r = 0 and relation (5), since

SX0 f − A0,r,X
n,ω f = SX0 (f − P r,d,X

k f)− A0,0,X
n,ω (f − P r,d,X

k f).

Next we consider indefinite integration. First we assume r = 0 and present the
Banach space version of the algorithm from Section 4 of [5]. It is a combination
of the Smolyak algorithm with the Monte Carlo method. Fix any m ∈ N, m ≥ 2
and L ∈ N0. For l̄ = (l1, . . . , ld) ∈ Nd

0 we set |l̄| = l1 + · · · + ld and define
Ul̄, VL ∈ L (C(Q)) by

Ul̄ = (P 1,1

ml1
− P 1,1

ml1−1)⊗ · · · ⊗ (P 1,1

mld−1
− P 1,1

mld−1−1)⊗ P 1,1

mld
, (16)

with the understanding that P 1,1
m−1 := 0. Furthermore, put

VL =
∑

l̄∈Nd0, |l̄|=L

Ul̄ (17)

and let
UX
l̄ = IX ⊗ Ul̄, V X

L = IX ⊗ VL (18)

be the respective Banach space versions. Set

1̄ = (1, . . . , 1︸ ︷︷ ︸
d

), ml̄ = (ml1 , . . . ,mld), Γml̄ = Γ1
ml1 × · · · × Γ1

mld
,

and for ī = (i1, . . . , id) ∈ Nd with 1̄ ≤ ī ≤ ml̄ (component-wise inequalities)

Ql̄,̄i =

[
i1 − 1

ml1
,
i1
ml1

]
× · · · ×

[
id − 1

mld
,
id
mld

]
.

So (Ql̄,̄i)1̄≤ī≤ml̄ is the partition of Q corresponding to the grid Γml̄ . Let ξl̄,̄i :

Ω → Ql̄,̄i (|l̄| = L, 1̄ ≤ ī ≤ ml̄) be independent random variables on a complete
probability space (Ω,Σ,P) such that ξl̄,̄i is uniformly distributed on Ql̄,̄i. Define
gl̄,ω ∈ `∞(Γml̄ , X) by

gl̄,ω(t) =
∑

j̄:Ql̄,j̄⊆[0,t]

|Ql̄,j̄|f(ξl̄,j̄(ω)) (t ∈ Γml̄), (19)

with the convention that gl̄,ω(t) = 0 if there is no j̄ with Ql̄,j̄ ⊆ [0, t] (that is, if
some component of t is zero). Finally we put

L = 2d− 1 (20)
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and, given n ∈ N,

m =
⌈
(n+ 1)

1
L

⌉
. (21)

If r = 0, we define

A1,0,X
n,ω f :=

∑
l̄∈Nd0, |l̄|=L

UX
l̄ gl̄,ω. (22)

In the case r ≥ 1 we put k =
⌈
n1/d

⌉
and

A1,r,X
n,ω f = SX1 (P r,d,X

k f) + A1,0,X
n,ω (f − P r,d,X

k f). (23)

Finally set A1,r,X
n =

(
A1,r,X
n,ω

)
ω∈Ω

. Similarly to (13) we have for r ∈ N0, n ∈ N,
ω ∈ Ω

A1,r,X
n,ω = IX ⊗ A1,r

n,ω, (24)

with A1,r
n,ω = A1,r,K

n,ω . The scalar case of the following result for r = 0 has been
shown in [5]. We use the tensor product technique to carry over parts of the
proof.

Proposition 2. Let r ∈ N0, 1 ≤ p ≤ 2. Then there are constants c1−3 > 0 such
that for all Banach spaces X, n ∈ N, ω ∈ Ω we have card

(
A1,r,X
n,ω

)
≤ c1n and for

all f ∈ Cr(Q,X)

‖SX1 f − A1,r,X
n,ω f‖C(Q,X) ≤ c2n

−r/d‖f‖Cr(Q,X) (25)

(E ‖SX1 f − A1,r,X
n,ω f‖pC(Q,X))

1/p ≤ c3τp(X)n−r/d−1+1/p‖f‖Cr(Q,X). (26)

Proof. We start with the case r = 0, where we have

‖SX1 f − A1,0,X
n,ω f‖C(Q,X)

≤ ‖SX1 f − V X
L S

X
1 f‖C(Q,X) + ‖V X

L S
X
1 f − A1,0,X

n,ω f‖C(Q,X). (27)

The first term can be estimated using

‖SX1 − V X
L S

X
1 ‖L (C(Q,X)) ≤ cm−L+d−1, (28)

the scalar case of which is Lemma 4.2 of [5]. The Banach space case follows by
taking tensor products and using (10) and (18). Now we consider the second
term. We have

‖V X
L S

X
1 f − A1,0,X

n,ω f‖C(Q,X) ≤
∑

l̄∈Nd0, |l̄|=L

‖UX
l̄ S

X
1 f − UX

l̄ gl̄,ω‖C(Q,X) (29)

and

‖UX
l̄ S

X
1 f − UX

l̄ gl̄,ω‖C(Q,X))

≤ ‖UX
l̄ ‖L (`∞(Γ

ml̄
),C(Q,X))

∥∥∥(SX1 f)|Γ
ml̄
− gl̄,ω

∥∥∥
`∞(Γ

ml̄
)

≤ c max
t∈Γ

ml̄

∥∥∥∫
[0,t]

f(t)dt−
∑

j̄:Ql̄,j̄⊆[0,t]

|Ql̄,j̄|f(ξl̄,j̄)
∥∥∥ = c max

1̄≤ī≤ml̄

∥∥∥ ∑
1̄≤j̄≤ī

ηl̄,j̄

∥∥∥ (30)
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with

ηl̄,j̄ =

∫
Ql̄,j̄

f(t)dt− |Ql̄,j̄|f(ξl̄,j̄) (1̄ ≤ j̄ ≤ ml̄). (31)

The random variables {ηl̄,j̄ : 1̄ ≤ j̄ ≤ ml̄} are independent, of mean zero, and
satisfy

‖ηl̄,j̄‖ ≤ 2|Ql̄,j̄|‖f‖C(Q,X) = 2m−L‖f‖C(Q,X). (32)

Combining (20–21) and (27–32), we obtain (25) for r = 0.
For p > 1 we get from Lemma 4.3 of [5] (a simple generalization of Doob’s

inequality, the proof of which literally carries over to the Banach space case)(
E max

1̄≤ī≤ml̄

∥∥∥ ∑
1̄≤j̄≤ī

ηl̄,j̄

∥∥∥p)1/p

≤ c
(
E
∥∥∥ ∑

1̄≤j̄≤l̄

ηl̄,j̄

∥∥∥p)1/p

. (33)

Moreover, Lemma 1 gives(
E
∥∥∥ ∑

1̄≤j̄≤l̄

ηl̄,j̄

∥∥∥p)1/p

≤ 2τp(X)
( ∑

1̄≤j̄≤l̄

E ‖ηl̄,j̄‖p
)1/p

. (34)

From (33) and (34) we conclude for p > 1(
E max

1̄≤ī≤ml̄

∥∥∥ ∑
1̄≤j̄≤ī

ηl̄,j̄

∥∥∥p)1/p

≤ cτp(X)
( ∑

1̄≤j̄≤l̄

E ‖ηl̄,j̄‖p
)1/p

. (35)

The same relation also holds for p = 1 by the triangle inequality. We obtain from
(29–30), (32), and (35)

(E ‖V X
L S

X
1 f − A1,0,X

n,ω f‖pC(Q,X))
1/p ≤ cτp(X)m−(1−1/p)L‖f‖C(Q,X). (36)

Now relation (26) for r = 0 follows from (20–21), (27–28), and (36).
As in the proof of Proposition 1 the case r ≥ 1 follows from the case r = 0

and (5), since

SX1 f − A1,r,X
n,ω f = SX1 (f − P r,d,X

k f)− A1,0,X
n,ω (f − P r,d,X

k f).

By (16–17) and (19–23) the number of function values used in A1,r,X
n,ω f is

ckd + c
∑
|l̄|=L

ml1 . . .mld ≤ cn.
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Theorem 1. Let r ∈ N0, ι ∈ {0, 1}, 1 ≤ p ≤ 2. Then there are constants
c1−4 > 0 such that for all Banach spaces X and n ∈ N the following hold. The
deterministic n-th minimal error satisfies

c1n
−r/d ≤ edet

n (SXι , BCr(Q,X)) ≤ c2n
−r/d.

Moreover, if X is of type p and pX is the supremum of all p1 such that X is of
type p1, then the randomized n-th minimal errors fulfills

c3n
−r/d−1+1/pX ≤ eran

n (SXι , BCr(Q,X)) ≤ c4τp(X)n−r/d−1+1/p.

Proof. The upper bounds follow from Propositions 1 and 2. Since definite in-
tegration is a particular case of indefinite integration in the sense that SX0 f =
(SX1 f) (1̄), it suffices to prove the lower bound for SX0 . The lower bounds for the
deterministic setting and for the randomized setting with pX = 2 follow from the
respective scalar cases (6) and (7), since trivially every Banach space X over K
contains an isometric copy of K.

It remains to show the lower bound for the randomized setting for Banach
spaces with pX < 2. Any such Banach space must be infinite dimensional (a finite
dimensional space X always has pX = 2). Let n ∈ N and let k ∈ N be such that

(k − 1)d < 8n ≤ kd. (37)

The Maurey-Pisier Theorem (see [9], Th. 2.3) implies that for every k ∈ N there
is a subspace Ek ⊂ X of dimension kd and an isomorphism T : `k

d

pX
→ Ek with

‖T‖ ≤ 1 and ‖T−1‖ ≤ 2. Let xi = Tei, where (ei)
kd

i=1 is the unit vector basis of
`k
d

pX
. Let ψ ∈ C∞(Rd) be such that ψ(t) > 0 for t ∈ (0, 1)d and suppψ ⊂ [0, 1]d.

Let (Qi)
kd

i=1 be the partition of Q into closed cubes of side length k−1 of disjoint
interior, let ti be the point in Qi with minimal coordinates and define ψi ∈ C(Q)
by

ψi(t) = ψ(k(t− ti)) (i = 1, . . . , kd).

It is readily checked that there is a constant c0 > 0 such that for all (αi)
kd

i=1 ∈
[−1, 1]k

d

c0k
−r

kd∑
i=1

αixiψi ∈ BCr(Q,X).

Put fi = c0k
−rxiψi and σ =

∫
Q
ψ(t)dt. Then for (αi)

kd

i=1 ∈ Rkd

∥∥∥ kd∑
i=1

αiS
X
0 fi

∥∥∥ = c0k
−r
∥∥∥ kd∑
i=1

αixi

∫
Q

ψi(t)dt
∥∥∥

= c0σk
−r−d

∥∥∥ kd∑
i=1

αixi

∥∥∥ ≥ ck−r−d

 kd∑
i=1

|αi|pX

1/pX

.
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Next we use Lemma 5 and 6 of [3] with K = X (Lemma 6 is formulated for
K = R, but directly carries over to K = X) and (37) to obtain

eran
n (SX0 , BCr(Q,X)) ≥

1

4
min

I⊆{1,...,kd},|I|≥kd−4n
E
∥∥∥∑
i∈I

εiS
X
0 fi

∥∥∥
≥ ck−r−(1−1/pX)d ≥ cn−r/d−1+1/pX ,

where (εi)
kd

i=1 is a sequence of independent centered Bernoulli random variables.

Note that the bounds in the randomized cases of Theorem 1 are matching
up to an arbitrarily small gap in the exponent. In some cases, they are even of
matching order.

Corollary 1. Let r ∈ N0, 1 ≤ p ≤ 2, ι ∈ {0, 1}. Then there are constants
c1, c2 > 0 such that the following hold. Let X be a Banach space which is of type
p and moreover, satisfies pX = p (that is, the supremum of types is attained).
Then for all n ∈ N

c1n
−r/d−1+1/p ≤ eran

n (SXι , BCr(Q,X)) ≤ c2τp(X)n−r/d−1+1/p.

This holds, in particular, for spaces of type 2 with p = 2 and, if 1 ≤ p1 <∞, for
spaces X = Lp1(N , ν), where (N , ν) is some measure space, with p = min(p1, 2).

For general Banach spaces X upper and lower bounds of matching order of
eran
n (SXι , BCr(Q,X)) (ι = 0, 1) remain an open problem.

4 A multilevel procedure

In the previous section we considered Banach space valued information function-
als. Now we develop a scheme which will serve as a bridge between the Banach
space and the scalar case. It is based on the multilevel Monte Carlo approach
from [2, 6]. Assume that a Banach space Y is continuously embedded into the
Banach space X, and let J be the embedding map. We shall identify elements
of Y with their images in X. For r, % ∈ N0 we consider integration of functions
from the set

BCr(Q,X) ∩BC%(Q,Y ).

Let (Tl)
∞
l=0 ⊂ L (X) (this is intended to be a sequence which approximates the

embedding J) and set for l ∈ N0

Rl = Tl ⊗ IC(Q) ∈ L (C(Q,X)). (38)

The operator Rl is just the pointwise application of Tl in the sense that for
f ∈ C(Q,X) and t ∈ Q we have (Rlf)(t) = Tlf(t). Fix any l0, l1 ∈ N0, l0 ≤ l1,

11



nl0 , . . . , nl1 ∈ N and define for ι ∈ {0, 1} and f ∈ C(Q,X) an approximation

A
(ι)
ω f to SXι f as follows:

A(ι)
ω f = Aι,r,Xnl0 ,ω

Rl0f +

l1∑
l=l0+1

Aι,%,Xnl,ω
(Rl −Rl−1)f (39)

and A(ι) = (A
(ι)
ω )ω∈Ω. It follows from (13), (24), and (38) that

A(ι)
ω = Tl0 ⊗ Aι,rnl0 ,ω +

l1∑
l=l0+1

(Tl − Tl−1)⊗ Aι,%nl,ω. (40)

Furthermore, put

Xl = clX(Tl(X)) (l ∈ N0), Xl−1,l = clX((Tl − Tl−1)(X)) (l ∈ N), (41)

where clX denotes the closure in X. In particular, Xl and Xl−1,l are endowed
with the norm induced by X. Given a Banach space Z, we introduce the notation
G0(Z) = Z andG1(Z) = C(Q,Z). Now we estimate the error ofA

(ι)
ω onBCr(Q,X)∩

BC%(Q,Y ).

Proposition 3. Let 1 ≤ p ≤ 2, r, % ∈ N0, and ι ∈ {0, 1}. Then there are
constants c1, c2 > 0 such that for all Banach spaces X,Y , and operators (Tl)

∞
l=0

as above, for all l0, l1 ∈ N0 with l0 ≤ l1, and for all (nl)
l1
l=l0
⊂ N the so-defined

algorithm A
(ι)
ω satisfies

sup
f∈BCr(Q,X)∩BC%(Q,Y )

‖SXι f − A(ι)
ω f‖Gι(X)

≤ ‖J − Tl1J‖L (Y,X) + c1‖Tl0‖L (X) n
−r/d
l0

+c1

l1∑
l=l0+1

‖(Tl − Tl−1)J‖L (Y,X) n
−%/d
l (ω ∈ Ω) (42)

and

sup
f∈BCr(Q,X)∩BC%(Q,Y )

(
E ‖SXι f − A(ι)

ω f‖
p
Gι(X)

)1/p

≤ ‖J − Tl1J‖L (Y,X) + c2τp(Xl0)‖Tl0‖L (X)n
−r/d−1+1/p
l0

+c2

l1∑
l=l0+1

τp(Xl−1,l)‖(Tl − Tl−1)J‖L (Y,X)n
−%/d−1+1/p
l . (43)

Proof. Let f ∈ BCr(Q,X) ∩BC%(Q,Y ). From (39) we get

‖SXι f − A(ι)
ω f‖Gι(X)

≤ ‖SXι f − SXι Rl1f‖Gι(X) + ‖SXι Rl0f − Aι,r,Xnl0 ,ω
Rl0f‖Gι(Xl0 )

+

l1∑
l=l0+1

‖SXι (Rl −Rl−1)f − Aι,%,Xnl,ω
(Rl −Rl−1)f‖Gι(Xl−1,l). (44)
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We have

‖SXι f − SXι Rl1f‖Gι(X) ≤ ‖SXι ‖L (C(Q,X),Gι(X))‖f −Rl1f‖C(Q,X)

≤ ‖J − Tl1J‖L (Y,X)‖f‖C(Q,Y ) ≤ ‖J − Tl1J‖L (Y,X). (45)

Furthermore, by Propositions 1 and 2

‖SXι Rl0f − Aι,r,Xnl0 ,ω
Rl0f‖Gι(Xl0 ) ≤ cn

−r/d
l0
‖Rl0f‖Cr(Q,Xl0 )

≤ cn
−r/d
l0
‖Tl0‖L (X)‖f‖Cr(Q,X) ≤ c‖Tl0‖L (X)n

−r/d
l0

, (46)

and similarly,

E
(
‖SXι Rl0f − Aι,r,Xnl0 ,ω

Rl0f‖
p
Gι(Xl0 )

)1/p

≤ cτp(Xl0)‖Tl0‖L (X)n
−r/d−1+1/p
l0

.(47)

For l0 < l ≤ l1 we obtain

‖SXι (Rl −Rl−1)f − Aι,%,Xnl,ω
(Rl −Rl−1)f‖Gι(Xl−1,l)

≤ cn
−%/d
l ‖(Rl −Rl−1)f‖C%(Q,Xl−1,l)

≤ cn
−%/d
l ‖(Tl − Tl−1)J‖L (Y,X)‖f‖C%(Q,Y ) ≤ c‖(Tl − Tl−1)J‖L (Y,X)n

−%/d
l (48)

and

E
(
‖SXι (Rl −Rl−1)f − Aι,%,Xnl,ω

(Rl −Rl−1)f‖pGι(Xl−1,l)

)1/p

≤ cτp(Xl−1,l)‖(Tl − Tl−1)J‖L (Y,X)n
−%/d−1+1/p
l . (49)

Combining (44–49) yields the result.

5 Scalar parametric case

In this section we apply the previous results to parametric definite and indefinite
integration. Let d, d1 ∈ N, Q1 = [0, 1]d1 . We consider numerical integration of
functions depending on a parameter s ∈ Q1. The definite parametric integration
operator S0 : C(Q1 ×Q)→ C(Q1) is given by

(S0f)(s) =

∫
Q

f(s, t)dt (s ∈ Q1).

We put F = BCr(Q1×Q), the set K is the scalar field K, and Λ is the following
class of information functionals Λ(Q1 × Q,K) = {δs,t : s ∈ Q1, t ∈ Q} where
δs,t(f) = f(s, t). This is just standard information consisting of values of f .
Hence, the definite parametric integration problem is

Π0 = (BCr(Q1×Q), C(Q1),S0,K,Λ(Q1 ×Q,K)).
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The indefinite parametric integration operator S1 : C(Q1×Q)→ C(Q1×Q)
is given by

(S1f)(s, t) =

∫
[0,t]

f(s, u)du (s ∈ Q1, t ∈ Q).

Here F , K, Λ are chosen to be the same as above, so the indefinite parametric
integration problem is described by

Π1 = (BCr(Q1×Q), C(Q1 ×Q),S1,K,Λ(Q1 ×Q,K)).

We can relate these problems to the previously considered Banach space val-
ued ones as follows. Setting X = C(Q1), we have

C(Q1 ×Q) = C(Q1)⊗λ C(Q) = X ⊗λ C(Q) = C(Q,X)

and Sι = S
C(Q1)
ι (ι = 0, 1). Moreover, referring to the notation of Section 4, we

put Y = Cr(Q1) and % = 0, which gives

BCr(Q1×Q) ⊆ BCr(Q,C(Q1)) ∩BC(Q,Cr(Q1)) = BCr(Q,X) ∩BC(Q,Y ).

Let r1 = max(r, 1) and define for l ∈ N0

Tl = P r1,d1

2l
∈ L (C(Q1)). (50)

By (5),
‖Tl‖L (C(Q1)) ≤ c1, ‖J − TlJ‖L (Cr(Q1),C(Q1)) ≤ c22−rl, (51)

where J : Cr(Q1) → C(Q1) is the embedding. The algorithms A
(ι)
ω defined in

(39) and equivalently (40) turn into

A(ι)
ω = P r1,d1

2l0
⊗ Aι,rnl0 ,ω +

l1∑
l=l0+1

(
P r1,d1

2l
− P r1,d1

2l−1

)
⊗ Aι,0nl,ω. (52)

Let us note that (52) together with the definitions of P r1,d1
m and Aι,rn,ω imply the

following representation of A
(ι)
ω . There are sl,i ∈ Q1, tl,j,ω ∈ Q, ϕl,i ∈ C(Q1),

ψ
(ι)
l,j,ω ∈ K if ι = 0, ψ

(ι)
l,j,ω ∈ C(Q) if ι = 1, Ml ≤ c2d1l, and Nl ≤ cnl such that

A(ι)
ω f =

l1∑
l=l0

Ml∑
i=1

Nl∑
j=1

f(sl,i, tl,j,ω)ϕl,i ⊗ ψ(ι)
l,j,ω (f ∈ C(Q1 ×Q), ω ∈ Ω). (53)

The particular shape of these functions can be read from the definitions (11–12)
and (16–23), for more details in the case ι = 1 see also [5]. It follows that

card(A(ι)
ω ) ≤ c

l1∑
l=l0

nl2
d1l (ω ∈ Ω). (54)

Now we estimate the error of A
(ι)
ω . Recall the notation G0(C(Q1)) = C(Q1) and

G1(C(Q1)) = C(Q1 ×Q).
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Proposition 4. Let r ∈ N0, d, d1 ∈ N, ι ∈ {0, 1}. There are constants c1−4 > 0
such that the following hold. For each n ∈ N there are l0 ∈ N0 and nl0 ∈ N such

that with l1 = l0 we have card(A
(ι)
ω ) ≤ c1n and

sup
f∈BCr(Q1×Q)

‖Sιf − A(ι)
ω f‖Gι(C(Q1)) ≤ c2n

− r
d1+d (55)

for all ω ∈ Ω. Moreover, for each n ∈ N with n ≥ 2 there is a choice of l0, l1 ∈ N0,
(nl)

l1
l=l0
⊂ N such that card(A

(ι)
ω ) ≤ c3n (ω ∈ Ω) and

sup
f∈BCr(Q1×Q)

(
E ‖Sιf − A(ι)

ω f‖2
Gι(C(Q1))

)1/2

≤ c4


n
− 2r+d

2(d1+d) (log n)
1
2 if r/d1 > 1/2

n−
1
2 (log n)2 if r/d1 = 1/2

n
− r
d1 (log n)

r
d1 if r/d1 < 1/2.

(56)

Proof. Let n ∈ N and put

l∗ =

⌈
log2 n

d1

⌉
, l0 =

⌊
d1

d1 + d
l∗
⌋
. (57)

Furthermore, let l1 ∈ N0, l0 ≤ l1 ≤ l∗, δ0, δ1 ≥ 0 to be fixed later on and define

nl0 = 2d1(l∗−l0), nl =
⌈
2d1(l∗−l)−δ0(l−l0)−δ1(l1−l)

⌉
(l = l0 + 1, . . . , l1). (58)

Then by (54) the cost fulfills

card(A(ι)
ω ) ≤ c

l1∑
l=l0

nl2
d1l ≤ c2d1l∗ + c

l1∑
l=l0+1

2d1l∗−δ0(l−l0)−δ1(l1−l)

≤ c


n if δ0 > 0 or δ1 > 0
n if δ0 = δ1 = 0 and l1 = l0
n log n if δ0 = δ1 = 0 and l1 > l0.

(59)

To show (55), we put l1 = l0 and get from (42) of Proposition 3, (51), and
(57–58)

sup
f∈BCr(Q1×Q)

‖Sιf − A(ι)
ω f‖Gι(C(Q1))

≤ c2−rl0 + cn
− r
d

l0
≤ c2

−r d1
d+d1

l∗
+ c2−

r
d
d1(l∗−l0) ≤ c2

− rd1l
∗

d+d1 ≤ cn
− r
d+d1 ,

which together with (59) gives (55).
Now we turn to the proof of (56) and assume, in addition, that n ≥ 2. Observe

that by (41) and (50)

Xl = P r1,d1

2l
(C(Q1)) = P r1,d1

2l
(`∞(Γd1

r12l
)) (60)
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and P r1,d1

2l
: `∞(Γd1

r12l
)→ Xl is an isomorphism which satisfies∥∥P r1,d1

2l

∥∥ ≤ c1,
∥∥(P r1,d1

2l

)−1∥∥ = 1.

Indeed, the first estimate is just the first part of (5), the second estimate is a
consequence of the fact that the inverse of the interpolation operator is just the
restriction of functions in Xl to Γd1

r12l
. It follows that

τ2(Xl) ≤ cτ2

(
`∞
(
Γd1

r12l

))
≤ c(l + 1)1/2. (61)

By (60), Xl−1 ⊆ Xl for l ≥ 1, therefore (41) implies that we also have Xl−1,l ⊆ Xl,
thus

τ2(Xl−1,l) ≤ c(l + 1)1/2. (62)

For brevity we denote

E := sup
f∈BCr(Q1×Q)

(
E ‖Sιf − A(ι)

ω f‖2
Gι(C(Q1))

)1/2
.

By (43) of Proposition 3, (51), and (61–62)

E ≤ c2−rl1 + c(l0 + 1)1/2n
−r/d−1/2
l0

+ c

l1∑
l=l0+1

(l + 1)1/22−rln
−1/2
l

≤ c2−rl1 + c(l∗ + 1)1/22−(r/d+1/2)d1(l∗−l0) + c(l∗ + 1)1/2

l1∑
l=l0+1

2−µ(l), (63)

where we defined

µ(l) = rl + (d1(l∗ − l)− δ0(l − l0)− δ1(l1 − l))/2 (l0 ≤ l ≤ l1). (64)

We have from (57)

rd1

d
(l∗ − l0) ≥ rd1

d
· d

d1 + d
l∗ = r

d1

d1 + d
l∗ ≥ rl0,

consequently,

2−(r/d+1/2)d1(l∗−l0) ≤ c2−rl0−d1(l∗−l0)/2 ≤ c2−µ(l0),

which together with (63) gives

E ≤ c2−rl1 + c(l∗ + 1)1/2

l1∑
l=l0

2−µ(l). (65)

We rewrite (64) as

µ(l) = rl0 + d1(l∗ − l1)/2 + (r − δ0/2)(l − l0) + (d1 − δ1)(l1 − l)/2. (66)
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If r > d1/2, we set δ1 = 0, l1 = l∗ and choose δ0 > 0 in such a way that
r − δ0/2 > d1/2. From (57), (65), and (66) we obtain

E ≤ c2−rl
∗

+ c(l∗ + 1)1/2

l∗∑
l=l0

2−rl0−(r−δ0/2)(l−l0)−d1(l∗−l)/2

≤ c2−rl
∗

+ c(l∗ + 1)1/22−rl0−d1(l∗−l0)/2

≤ c2−rl
∗

+ c(l∗ + 1)1/22
− (r+d/2)d1

d1+d
l∗

(67)

≤ c(l∗ + 1)1/22
− (r+d/2)d1

d1+d
l∗ ≤ cn

− r+d/2
d1+d (log n)1/2, (68)

where in the step from (67) to (68) we used (r+d/2)d1

d1+d
< r, which follows from the

assumption r > d1/2. This together with (59) proves (56) for r > d1/2.
If r = d1/2, we set δ0 = δ1 = 0, l1 = l∗ and get from (57), (65), and (66)

E ≤ c2−rl
∗

+ c(l∗ + 1)1/2

l∗∑
l=l0

2−rl0−r(l−l0)−d1(l∗−l)/2

≤ c(l∗ + 1)3/22−d1l∗/2 ≤ cn−1/2(log n)3/2.

Combining this with (59) and transforming n log n into n gives the respective
estimate (56) in this case.

Finally, if r < d1/2, we set δ0 = 0, choose δ1 > 0 in such a way that (d1 −
δ1)/2 > r and put

l1 = l∗ −
⌈
d−1

1 log2(l∗ + 1)
⌉
. (69)

Consequently,

log2(l∗ + 1) ≤ d1(l∗ − l1) < log2(l∗ + 1) + d1. (70)

Also observe that there is a constant c0 ∈ N such that for n ≥ c0

l0 ≤ l∗ −
⌈
d−1

1 log2(l∗ + 1)
⌉
≤ l∗. (71)

Since for n < c0 the estimate (56) follows trivially from (65) by a suitable choice
of the constant, we can assume n ≥ c0, and thus (71). By (57), (65–66), (69),
and (70)

E ≤ c2−rl1 + c(l∗ + 1)1/2

l1∑
l=l0

2−rl0−d1(l∗−l1)/2−r(l−l0)−(d1−δ1)(l1−l)/2

≤ c2−rl1 + c(l∗ + 1)1/22−rl0−d1(l∗−l1)/2−r(l1−l0)

≤ c2−rl1 + c(l∗ + 1)1/22−rl1−(log2(l∗+1))/2

≤ c2−rl1 = c2−rl
∗+r(l∗−l1) ≤ c2−rl

∗+(r/d1) log2(l∗+1)

= c2−rl
∗
(l∗ + 1)r/d1 ≤ cn−r/d1(log n)r/d1 .

With this, (56) is now a consequence of (59).
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The following theorem gives the complexity of parametric integration. The
case of definite parametric integration is already contained in [6] (with a slightly
better upper bound in the limit case r/d1 = 1/2: (log n)3/2 instead of (log n)2).
The case of indefinite parametric integration is new.

Theorem 2. Let r ∈ N0, d, d1 ∈ N, ι ∈ {0, 1}. Then there are constants c1−8 > 0
such that for all n ∈ N with n ≥ 2 the deterministic n-th minimal error satisfies

c1n
− r
d1+d ≤ edet

n (Sι, BCr(Q1×Q)) ≤ c2n
− r
d1+d .

For the randomized n-th minimal error we have the following: If r/d1 > 1/2, then

c3n
− 2r+d

2(d1+d) (log n)
1
2 ≤ eran

n (Sι, BCr(Q1×Q)) ≤ c4n
− 2r+d

2(d1+d) (log n)
1
2 ,

if r/d1 = 1/2, then

c5n
− 1

2 (log n)
1
2 ≤ eran

n (Sι, BCr(Q1×Q)) ≤ c6n
− 1

2 (log n)2

and if r/d1 < 1/2, then

c7n
− r
d1 (log n)

r
d1 ≤ eran

n (Sι, BCr(Q1×Q)) ≤ c8n
− r
d1 (log n)

r
d1 .

Proof. The upper bounds follow from Proposition 4. For the lower bounds it
suffices to consider parametric definite integration. But these are contained in
Theorem 2.4 of [6] (note a misprint there, case r < d1/2: d2 is to be replaced by
d1).

Let us finally note that the choice of Y = Cr(Q1) and % = 0 in this section
was motivated by our application to the class Cr(Q1 ×Q), but is, of course, not
the only interesting one. We leave other cases to future consideration.
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