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Abstract

We study the complexity of computing the norm ‖f‖Lq(Q), where f is from the unit

ball of a Sobolev space W r
p (Q) and Q = [0, 1]d is the unit cube. The deterministic case

is a consequence of a general result by Wasilkowski. We consider the randomized setting
with standard information and determine the order of the randomized n-th minimal error.
Furthermore, we discuss problems related to the arithmetic cost of the proposed algorithms
and present modifications of nearly optimal arithmetic cost in the one-dimensional case.

1 Introduction

We study the complexity of computing Sq(f) = ‖f‖Lq(Q) that is, the Lq norm of a function. The
function f is supposed to belong to the unit ball of a Sobolev space W r

p (Q), where Q = [0, 1]d,
r ∈ N0, 1 ≤ p, q ≤ ∞, and we assume that W r

p (Q) is embedded in Lq(Q). We work in the
setting of information-based complexity theory. Information is standard, that is, consists of
function values.

A general result of G. W. Wasilkowski [15] states that in the deterministic setting the n-th
minimal errors of Sq are of the same order as those of the embedding J : W r

p (Q)→ Lq(Q) and
thus can be derived directly from known results on approximation.

It turns out that in the randomized setting such a general result no longer holds. We
determine the order of the randomized n-th minimal errors of Sq. For this purpose we present a
randomized algorithm for computing Sq(f) of the needed information cost and analyze its error.
Furthermore, we establish matching lower bounds. We provide comparisons to approximation
and integration.

The proposed algorithms both for the deterministic and randomized setting rely on the
knowledge of certain integrals (of powers of the absolute value of polynomials). Except for
a few constellations of the parameters r and q these integrals cannot be computed explicitly
in the real number model of computation. In the case d = 1 we show how to approximate
these integrals in such a way that the resulting algorithms keep the optimal error rate and are
implementable at nearly optimal cost. These results are new also for the deterministic setting.
We also discuss some extensions.

The results of this paper raise many further interesting questions. For example, the infor-
mation complexity of computing other function space norms, in particular Sobolev norms with
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non-zero smoothness index, is unknown. Moreover, the randomized information complexity
under linear information is not studied at all here. The arithmetic complexity for d > 1 is open
and very challenging for many situations, even for those in which the information complexity
is known. This also relates to the deterministic setting.

The paper is organized as follows. Section 2 contains notation, the main result, and some
comparisons to approximation and integration. In Section 3 we present a randomized algorithm
and analyze its error to obtain the upper bounds for the minimal error. Section 4 is devoted
to the proof of the lower bounds. In Section 5 we study implementability in the real number
model of computation. Section 6 contains further discussion, including generalizations and open
problems. In an Appendix, Section 7, we recall the needed formal notions of information-based
complexity theory concerning algorithms and minimal errors.

2 Notation and the Main Result

Let N = {1, 2, . . . } and N0 = N ∪ {0}. Given a Banach space X, we denote its unit ball by
BX . All spaces considered in this paper are assumed to be defined over the same field of scalars
K, where K = R or K = C. Given a nonempty set M , we denote by F(M) the space of all
K-valued functions on M . Let d ∈ N, Q = [0, 1]d, r ∈ N0, 1 ≤ p ≤ ∞. Let Lp(Q) denote the
space of equivalence classes of K-valued, Borel measurable, p-integrable functions, equipped
with the norm

‖f‖Lp(Q) =

(∫
Q

|f(x)|pdx
)1/p

for p <∞, and
‖f‖L∞(Q) = ess supx∈Q|f(x)|.

For r ∈ N, the Sobolev space W r
p (Q) consists of all equivalence classes of functions f ∈ Lp(Q)

such that for all α = (α1, . . . , αd) ∈ Nd
0 with |α| :=

∑d
j=1 αj ≤ r, the generalized partial

derivative Dαf belongs to Lp(Q). The norm on W r
p (Q) is defined as

‖f‖W r
p (Q) =

∑
|α|≤r

‖Dαf‖pLp(Q)

1/p

if p <∞, and
‖f‖W r

∞(Q) = max
|α|≤r
‖Dαf‖L∞(Q).

For r = 0 we set W 0
p (Q) := Lp(Q). Let C(Q) denote the space of continuous functions on Q,

endowed with the supremum norm.
Let 1 ≤ q ≤ ∞. First we note that the embedding operator J : W r

p (Q) → Lq(Q) is
continuous if and only if the following embedding condition holds (see [1], Ch. 5):

1 ≤ q <∞ and r
d
≥ max

(
1
p
− 1

q
, 0
)

or
q =∞, 1 < p <∞, and r

d
> 1

p

or
q =∞, p ∈ {1,∞}, and r

d
≥ 1

p
.


(1)
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Under the assumption of (1), we seek to approximate the (nonlinear) operator Sq : W r
p (Q)→ R,

defined by

Sq(f) = ‖f‖Lq(Q), (2)

that is, we want to compute the Lq norm of functions from W r
p (Q). We consider standard

information, that is, values of f . We also note that W r
p (Q) is continuously embedded into

C(Q) if and only if
p = 1 and r/d ≥ 1

or
1 < p ≤ ∞ and r/d > 1/p

 (3)

see again [1], Ch. 5.
Concerning constants, we make the convention that the same symbol c, c1, c2, . . . may

denote different constants, even in a sequence of relations. Furthermore, we use the following
notation: For nonnegative reals (an)n∈N and (bn)n∈N we write an � bn if there are c > 0 and
n0 ∈ N such that for all n ≥ n0, an ≤ cbn. We also write an � bn if simultaneously an � bn
and bn � an. If not specified, the function log means log2.

Our study is carried out in the framework of information-based complexity theory [14, 10],
see also [4, 5] for the precise notions used here. Let F be a nonempty set, G a Banach space,
S : F → G an arbitrary mapping, K a nonempty set, and Λ a set of mappings from F to K.
We interpret F as the set of inputs, S as the solution operator, that is, the mapping that sends
the input f ∈ F to the exact solution S(f), and Λ is understood as the class of admissible
information functionals. Thus, the tuple P = (F,G, S,K,Λ) describes the abstract numerical
problem under consideration.

The error of a deterministic algorithm A is denoted by

e(S,A, F,G) = sup
f∈F
‖S(f)− A(f)‖G.

The cardinality of A, denoted by card(A), is the number of information functionals used in A.
Let edet

n (S, F,G) denote the n-th minimal error in the deterministic setting, that is, the minimal
possible error among all deterministic algorithms of cardinality at most n. We refer to the
Appendix, Section 7, where for the convenience of the reader the respective formal definitions
are collected. If G ∈ {R,C}, we write edet

n (S, F ).
In the case of our norm computation problem (as well as for the related problems of ap-

proximation J and integration I, see below) we want to consider standard information, that
is, function values Λ = {δx : x ∈ Q}. This needs some care, because, by definition, W r

p (Q)
consists of equivalence classes of functions. Let us first consider the deterministic case. If (3)
holds, we put F = BW r

p (Q). Each class f ∈ W r
p (Q) contains a unique continuous representative

f0 ∈ f and we set δx(f) = f0(x). If (3) does not hold, the elements of Λ = {δx : x ∈ Q} are
not well-defined on BW r

p (Q). Here we set F = BW r
p (Q) ∩ C(Q), that is, we consider the (dense)

subset of those f ∈ BW r
p (Q) which do contain a continuous representative. Furthermore, we put

G = R, S = Sq is as defined in (2) above, and K = K.
It follows from a general result of G. Wasilkowski [15], Th. 4.1, that in the deterministic

setting the n-th minimal errors of Sq : BW r
p (Q) → R are of the same order as those of the

embedding J : BW r
p (Q) → Lq(Q), more precisely

1

4
edet
n (J,BW r

p (Q), Lq(Q)) ≤ edet
n (Sq, BW r

p (Q)) ≤ edet
n (J,BW r

p (Q), Lq(Q)). (4)



August 30, 2018 4

Thus, let us first state known results about the deterministic minimal errors of J . We refer to
[6] and the detailed references to previous results therein.

Proposition 2.1. Assume that (1) holds. Then

edet
n (J,BW r

p (Q), Lq(Q)) � n−r/d+max(1/p−1/q,0) if (3) holds

edet
n (J,BW r

p (Q) ∩ C(Q), Lq(Q)) � 1 if (3) does not hold.

As a direct consequence of (4) and Proposition 2.1 we derive

Corollary 2.2. Assume that (1) holds. Then

edet
n (Sq, BW r

p (Q)) � n−r/d+max(1/p−1/q,0) if (3) holds

edet
n (Sq, BW r

p (Q) ∩ C(Q)) � 1 if (3) does not hold.

Now we pass to the randomized setting. A randomized algorithm is a family A = (Aω)ω∈Ω

of deterministic algorithms over a probability space (Ω,Σ,P). The error of A is defined as

e(S,A, F,G) = sup
f∈F

E ‖S(f)− Aω(f)‖G.

Let eran
n (S, F,G) denote the n-th minimal error in the randomized setting, that is, the minimal

possible error among all randomized algorithms of (average) cardinality at most n. Again we
refer to Section 7 for details, including measurability assumptions.

Here it is convenient to consider the respective Sobolev space of functions (not equivalence
classes), which we denote by Wr

p(Q); thus f ∈ Wr
p(Q) iff [f ] ∈ W r

p (Q), where [f ] is the
equivalence class of f with respect to equality up to a subset of Q of Lebesgue measure zero.
This is a linear space and ‖[f ]‖W r

p (Q) is a seminorm on it (we use though the same symbol

‖f‖W r
p (Q) for it). We also write Lp(Q) for W0

p (Q). We put F = BWr
p(Q), G = R, Sq as defined

by (2) above, K = K, and Λ = {δx : x ∈ Q}, where now δx has the usual meaning δx(f) = f(x).
In connection with equivalence classes let us mention a useful subclass of the class of all

randomized algorithms. A randomized algorithm A = (Aω)ω∈Ω for the just defined problem is
called consistent if for all f0, f1 ∈ Wr

p(Q), [f0] = [f1] implies that Aω(f0) = Aω(f1) holds for
P-almost all ω ∈ Ω (this concept was introduced in [6], see also [9], Section 5 for a more general
setting). We do not explore this notion here, but just mention that the algorithms developed
in Sections 3, 5, and 6 are consistent (thus, all error estimates hold for W r

p (Q) and Wr
p(Q)

equally). In view of this we use the notation Wr
p(Q) only in connection with lower bounds and

randomized minimal errors eran
n . As long as upper bounds, algorithms and their analysis are

concerned, we do not distinguish between Wr
p(Q) and W r

p (Q) and use the latter notation.
The main result of the present paper is the following

Theorem 2.3. Assume that (1) holds. Then

eran
n (Sq, BWr

p(Q)) � n−r/d+max(1/p−1/q,−1/2).

In terms of information complexity, see (99) and (100) of the Appendix, this readily implies

Corollary 2.4. Assume that (1) holds. Then

nran
ε (Sq, BWr

p(Q)) �
(

1

ε

) 1
r/d−max(1/p−1/q,−1/2)

.
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The proof of the upper bound of Theorem 2.3 is given in Section 3, the lower bound is
shown in Section 4. For comparison, let us recall the randomized minimal errors of J (see [6],
[7], and references therein).

Proposition 2.5. Assume that (1) holds. Then

eran
n (J,BWr

p(Q), Lq(Q)) � n−r/d+max(1/p−1/q,0).

First of all, we see that a relation like (4) no longer holds for the randomized setting (the
trivial upper bound holds, of course, but the lower bound does not). Indeed, the exponent of
n for randomized approximation of Sq is smaller than that of J iff p > q. The improvement in
the exponent is min(1/q − 1/p, 1/2), thus, it can be as large as 1/2.

For comparison, let us also mention the complexity of integration I : W r
p (Q) → R, with

If =
∫
Q
f(x)dx, see [10], [6], and references therein.

Proposition 2.6. Let r ∈ N0, 1 ≤ p ≤ ∞. Then

edet
n (I, BW r

p (Q)) � n−r/d if (3) holds

edet
n (I, BW r

p (Q) ∩ C(Q)) � 1 if (3) does not hold

eran
n (I, BWr

p(Q)) � n−r/d+max(1/p−1,−1/2).

In the deterministic case, the exponent for integration is smaller than that for norm compu-
tation iff (3) holds and p < q; otherwise they are the same. In the randomized case the minimal
errors of integration decay faster than those of norm computation iff q > 1 and 1/q−1/p < 1/2;
otherwise they are of the same order.

3 Upper bounds

Lemma 3.1. Let 0 < α <∞. Then for x, y ∈ R with x, y ≥ 0 and x+ y > 0

min(α, 1) max(x, y)α−1|x− y| ≤ |xα − yα| ≤ max(α, 1) max(x, y)α−1|x− y|. (5)

Moreover, if 1 ≤ α <∞, then
|x− y| ≤ |xα − yα|1/α. (6)

Proof. The case α = 1 is trivial. We can assume y ≥ x. We have

yα − xα = α(y − x)

∫ 1

0

(x+ τ(y − x))α−1dτ. (7)

For 0 < α < 1 relation (7) gives

α(y − x)yα−1 ≤ |yα − xα| ≤ α(y − x)

∫ 1

0

(τy)α−1dτ = (y − x)yα−1,

while for 1 < α <∞ we obtain analogously

(y − x)yα−1 = α(y − x)

∫ 1

0

(τy)α−1dτ ≤ |yα − xα| ≤ α(y − x)yα−1.

Finally, (6) follows from (5) since max(x, y) ≥ |x− y|.
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To show the upper bounds in the randomized case, we use a construction from [6]. Fix
0 < δ < 1 and let κ ∈ N. For j = 1, . . . , κ let zj ∈ [0, 1− δ]d and let ψj be a polynomial on Rd.
Let P : C(Q)→ L∞(Q) be given by

(Pf)(x) =
κ∑
j=1

f(zj)ψj(x) (x ∈ Q).

We assume that Pg = g for all polynomials g of degree not exceeding max(r − 1, 0). For
example, we could take for d = 1 the Lagrange interpolation operator of degree max(r − 1, 0)
and for d > 1 its tensor product, with (zj)

κ
j=1 the uniform grid on [0, 1 − δ]d, and (ψj)

κ
j=1

the respective Lagrange polynomials. We shall use a randomly shifted version of P . Random
shifts are often used in numerical analysis to improve the behaviour of certain methods, for
example, in quasi-Monte Carlo integration, see, e.g., [3]. Let θ be a uniformly distributed on
[0, δ]d random variable, defined on a probability space (Ω,Σ,P). Moreover, we assume that
θ(ω) ∈ [0, δ]d for all ω ∈ Ω. For f ∈ F(Q) put

(Pθf) (x) =
κ∑
j=1

f(zj + θ)ψj(x− θ) (x ∈ Q). (8)

Let l ∈ N0 and let (Qi)
2dl

i=1 be the partition of Q into 2dl cubes of side-length 2−l and of
disjoint interior. Let xi denote the point in Qi with minimal coordinates. Define the operators
El,i, Rl,i : F(Q)→ F(Q) by setting for f ∈ F(Q) and x ∈ Q

(El,if)(x) = f(xi + 2−lx)

and

(Rl,if)(x) =

{
f(2l(x− xi)) if x ∈ Qi

0 otherwise.

For ω ∈ Ω set

Pl,θf =
2dl∑
i=1

Rl,iPθEl,if, (9)

thus

(Pl,θf)(x) =
2dl∑
i=1

χQi(x)
κ∑
j=1

f(xi + 2−l(zj + θ))ψj(2
l(x− xi)− θ) (x ∈ Q). (10)

Lemma 3.2. Let r ∈ N0, d ∈ N, 1 ≤ p, q ≤ ∞, and assume that (1) is satisfied. Then there
are constants c1, c2, c3 > 0 such that for all l ∈ N0 and f ∈ W r

p (Q) the following hold. If q <∞,
then

(E ‖f − Pl,θf‖qLq(Q))
1/q ≤ c12−rl+max(1/p−1/q,0)dl‖f‖W r

p (Q), (11)

and if q =∞, then

ess supω∈Ω ‖f − Pl,θf‖L∞(Q) ≤ c22−rl+dl/p‖f‖W r
p (Q). (12)

If (3) holds, then for each ω ∈ Ω

‖f − Pl,θ(ω)f‖Lq(Q) ≤ c32−rl+max(1/p−1/q,0)dl‖f‖W r
p (Q). (13)
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This was shown in [6], Prop. 1 (the condition r/d > 1/p−1/q imposed there can be replaced
by (1), the restriction q < ∞ can be relaxed to q ≤ ∞, both without essential changes in the
proof). The deterministic case (13) is well-known. The proof of Prop. 1 of [6] can easily be
adapted to yield also the deterministic case – just omit the expectations, see also [2], Theorem
3.1.4.

We define two randomized algorithms for Sq. For n ∈ N set

l =

⌈
log2 n

d

⌉
(14)

and
A1
n,ω(f) = ‖Pl,θ(ω)f‖Lq(Q). (15)

It follows from the definition (8–10) of Pl,θ that A1
n,ω(f) is Σ-measurable for each f ∈ W r

p (Q).
The cardinality of A1

n, that is, the number of function values used in the algorithm (see Section
7) satisfies card(An,ω, f) ≤ cn for ω ∈ Ω.

Corollary 3.3. Let r ∈ N0, d ∈ N, 1 ≤ p, q ≤ ∞ be such that (1) is satisfied. Then there are
constants c1, c2, c3 > 0 such that for all n ∈ N and f ∈ W r

p (Q) the following hold. If q < ∞,
then

(E |Sq(f)− A1
n,ω(f)|q)1/q ≤ c1n

−r/d+max(1/p−1/q,0)‖f‖W r
p (Q), (16)

and if q =∞, then

ess supω∈Ω |Sq(f)− A1
n,ω(f)| ≤ c2n

−r/d+max(1/p−1/q,0)‖f‖W r
p (Q). (17)

If (3) holds, then for each ω ∈ Ω

|Sq(f)− A1
n,ω(f)| ≤ c3n

−r/d+max(1/p−1/q,0)‖f‖W r
p (Q). (18)

Proof. Let q <∞. By Lemma 3.2,

(E |Sq(f)− A1
n,ω(f)|q)1/q

=
(
E
∣∣‖f‖Lq(Q) − ‖Pl,θf‖Lq(Q)

∣∣q)1/q ≤ (E ‖f − Pl,θf‖qLq(Q))
1/q

≤ c 2−rl+(1/p−1/q)dl‖f‖W r
p (Q) ≤ cn−r/d+1/p−1/q‖f‖W r

p (Q).

The other cases are handled analogously.

The second algorithm will be defined only for q <∞. Here it is convenient to assume that

(Ω,Σ,P) = (Ω1,Σ1,P1)× (Ω2,Σ2,P2),

where the random variable θ described above is defined on the probability space (Ω1,Σ1,P1),
so that θ = θ(ω1). Moreover, ξi = ξi(ω2) (i = 1, 2, . . . ) is a sequence of independent, uniformly
distributed on Q random variables defined on another probability space (Ω2,Σ2,P2). Let n ∈ N,
let l be given by (14), and define an algorithm A2

n = (A2
n,ω)ω∈Ω by setting for ω = (ω1, ω2) and

f ∈ W r
p (Q)

A2
n,ω(f) =

∣∣∣∣∣
∫
Q

|(Pl,θ(ω1)f)(x)|qdx+
1

n

n∑
i=1

(
|f(ξi(ω2))|q − |(Pl,θ(ω1)f)(ξi(ω2))|q

)∣∣∣∣∣
1/q

. (19)
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Thus, we approximate the integral by the Monte Carlo method with variance reduction by sep-
arating the main part. It readily follows from the assumptions that A2

n,ω(f) is Σ-measurable for
each f ∈ W r

p (Q). The number of function values used in algorithm A2
n satisfies card(A2

n,ω, f) ≤
cn (ω ∈ Ω).

Let p1 be such that
2 < p1 <∞ if p =∞ and q = 1, (20)

and
1

p1

= 1 +
1

p
− 1

q
if p <∞ or q > 1. (21)

The following is the key result of this section.

Proposition 3.4. Let r ∈ N0, d ∈ N, 1 ≤ q < p ≤ ∞, and let p1 satisfy (20)–(21). Then there
is a constant c > 0 such that for all n ∈ N and f ∈ W r

p (Q)(
E |Sq(f)− A2

n,ω(f)|p1
)1/p1 ≤ cn−r/d+max(1/p−1/q,−1/2)‖f‖W r

p (Q).

Proof. Since Sq(af) = |a|Sq(f) for a ∈ R and A2
ω has the same property, we can assume

f ∈ BW r
p (Q), f 6= 0. Using Lemma 3.1, we estimate

|Sq(f)− A2
n,ω(f)| =

∣∣(I|f |q)1/q − (A2
n,ω(f)q)1/q

∣∣
≤ max(I|f |q, A2

n,ω(f)q)−
q−1
q

∣∣I|f |q − A2
n,ω(f)q

∣∣
≤ ‖f‖−(q−1)

Lq(Q)

∣∣I|f |q − A2
n,ω(f)q

∣∣ (ω ∈ Ω).

Consequently,

E |Sq(f)− A2
n,ω(f)|p1

≤ ‖f‖−(q−1)p1

Lq(Q) E
∣∣I|f |q − A2

n,ω(f)q
∣∣p1

= ‖f‖−(q−1)p1

Lq(Q) E

∣∣∣∣∣I|f |q −
∣∣∣∣I|Pl,θf |q +

1

n

n∑
i=1

(|f(ξi)|q − |(Pl,θf)(ξi)|q)
∣∣∣∣
∣∣∣∣∣
p1

≤ ‖f‖−(q−1)p1

Lq(Q) E ω1E ω2

∣∣∣∣∣I(|f |q − |Pl,θf |q)−
1

n

n∑
i=1

(|f(ξi)|q − |(Pl,θf)(ξi)|q)

∣∣∣∣∣
p1

. (22)

Fix ω1 ∈ Ω1 and denote

ηi = I(|f |q − |Pl,θf |q)− (|f(ξi)|q − |(Pl,θf)(ξi)|q) .

The ηi are real-valued independent random variables of mean zero on (Ω2,Σ2,P2). Let u =
min(p1, 2). We conclude from (20), (21), and the assumption q < p that 1 < u ≤ 2, u ≤ p1 ≤ p
and

1

u
− 1 = max

(
1

p1

,
1

2

)
− 1 = max

(
1

p
− 1

q
,−1

2

)
. (23)

It follows (see, e.g., [8], Lemma 2.1) that

E ω2

∣∣∣∣∣I(|f |q − |Pl,θf |q)−
1

n

n∑
i=1

(|f(ξi)|q − |(Pl,θf)(ξi)|q)

∣∣∣∣∣
p1

= E ω2

∣∣∣∣ 1n
n∑
i=1

ηi

∣∣∣∣p1

≤ cn−p1

(
n∑
i=1

(E ω2|ηi|p1)u/p1

)p1/u

= cnp1/u−p1E ω2|η1|p1 ≤ cnp1(1/u−1)E ω2

∣∣|f(ξ1)|q − |(Pl,θf)(ξ1)|q
∣∣p1 . (24)
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Joining (22) and (24) gives

E |Sq(f)− A2
n,ω(f)|p1 ≤ cnp1(1/u−1)‖f‖−(q−1)p1

Lq(Q) E ω1E ω2

∣∣|f(ξ1)|q − |(Pl,θf)(ξ1)|q
∣∣p1 . (25)

First we assume q = 1. Then, recalling p1 ≤ p, we conclude from Lemma 3.2

E ω1E ω2

∣∣|f(ξ1)| − |(Pl,θf)(ξ1)|
∣∣p1 ≤ E ω1‖f − Pl,θf‖

p1

Lp1 (Q) ≤ c2−p1rl ≤ cn−p1r/d. (26)

Combining (25) and (26), and taking into account (23), we arrive at(
E |Sq(f)− A2

n,ω(f)|p1
)1/p1 ≤ cn−r/d+1/u−1 = cn−r/d+max(1/p−1,−1/2),

which concludes the proof for for q = 1.
Now we consider the case q > 1. By (21), p1 < p. Let v be given by

1

v
+
p1

p
= 1. (27)

Then 1 ≤ v <∞. We note that by (21) and (27)

1

p1v
=

1

p1

− 1

p
= 1− 1

q
,

hence we have

(q − 1)p1v = q. (28)

Using Lemma 3.1, we obtain

E ω1E ω2

∣∣|f(ξ1)|q − |(Pl,θf)(ξ1)|q
∣∣p1

≤ qp1 E ω1E ω2

(
|f(ξ1)− (Pl,θf)(ξ1)|p1(|f(ξ1)|q−1 + |(Pl,θf)(ξ1)|q−1)p1

)
=: qp1E. (29)

Next we show that

E ≤ c2−p1rl
(
E ω1E ω2(|f(ξ1)|q−1 + |(Pl,θf)(ξ1)|q−1)p1v

)1/v
. (30)

For this purpose, we distinguish between two cases. First we assume p < ∞. Using (27),
Hölder’s inequality, and Lemma 3.2, we conclude that

E ≤ (E ω1E ω2|f(ξ1)− (Pl,θf)(ξ1)|p)p1/p
(
E ω1E ω2(|f(ξ1)|q−1 + |(Pl,θf)(ξ1)|q−1)p1v

)1/v

=
(
E ω1‖f − Pl,θf‖

p
Lp(Q)

)p1/p (
E ω1E ω2(|f(ξ1)|q−1 + |(Pl,θf)(ξ1)|q−1)p1v

)1/v

≤ c2−p1rl
(
E ω1E ω2(|f(ξ1)|q−1 + |(Pl,θf)(ξ1)|q−1)p1v

)1/v
,

thus (30). For p =∞ we estimate, using Lemma 3.2 again,

E ≤ E ω1

(
‖f − Pl,θf‖p1

L∞(Q)E ω2(|f(ξ1)|q−1 + |(Pl,θf)(ξ1)|q−1)p1

)
≤ ess supω1∈Ω1

‖f − Pl,θf‖p1

L∞(Q)E ω1E ω2(|f(ξ1)|q−1 + |(Pl,θf)(ξ1)|q−1)p1

≤ c2−p1rlE ω1E ω2(|f(ξ1)|q−1 + |(Pl,θf)(ξ1)|q−1)p1 ,
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which completes the proof of (30), since v = 1 for p =∞.
We have (

E ω1E ω2(|f(ξ1)|q−1 + |(Pl,θf)(ξ1)|q−1)p1v
)1/v

≤ c
(
E ω1E ω2

(
|f(ξ1)|(q−1)p1v + |Pl,θf)(ξ1)|(q−1)p1v

))1/v

≤ c
(
E ω1E ω2|f(ξ1)|(q−1)p1v

)1/v
+ c
(
E ω1E ω2|Pl,θf)(ξ1)|(q−1)p1v

)1/v

= c‖f‖(q−1)p1

L(q−1)p1v
(Q) + c

(
E ω1‖Pl,θf‖

(q−1)p1v
L(q−1)p1v

(Q)

)1/v

≤ c‖f‖(q−1)p1

L(q−1)p1v
(Q) = c‖f‖(q−1)p1

Lq(Q) , (31)

where we used Lemma 3.2 and (28). Joining (25), (29), (30), (31) and using (23) we obtain(
E |Sq(f)− A2

n,ω(f)|p1
)1/p1 ≤ c2−rln1/u−1 = cn−r/d+max(1/p−1/q,−1/2).

The upper bound of Theorem 2.3 follows for p ≤ q from Corollary 3.3 and for p > q from
Proposition 3.4.

Let us note that in the case r = 0 there is no need of variance reduction involving Pl,θ. Here
a simpler algorithm also gives the needed upper bound. Let n ∈ N and define A3

n = (A3
n,ω)ω∈Ω

for ω = (ω1, ω2) and f ∈ Lp(Q) by

A3
n,ω(f) =

(
1

n

n∑
i=1

|f(ξi(ω2))|q
)1/q

. (32)

Corollary 3.5. Let 1 ≤ q < p ≤ ∞, and let p1 be such that (20) and (21) hold. Then there is
a constant c > 0 such that for all n ∈ N and f ∈ Lp(Q)(

E |Sq(f)− A3
n,ω(f)|p1

)1/p1 ≤ cnmax(1/p−1/q,−1/2)‖f‖Lp(Q).

The point is that for r = 0, Lemma 3.2 and the proof of Proposition 3.4 remain true if we
replace Pl,θ by the zero operator.

4 Lower bounds

The proof given in this section follows general lines which are by now standard, but it contains
some new elements (like the non-linearity of Sq and the corresponding choice of the measure
on a ”non-linear” set, see (35)). We therefore provide full details.

Fix n ∈ N and let
m =

⌈
8n1/d

⌉
, n̄ = md. (33)

Let w ∈ C∞(Rd) be such that 0 < w(x) ≤ 1/2 for x ∈ (0, 1)d and suppw ⊆ [0, 1]d. Let (Qi)
n̄
i=1

be the partition of Q into closed cubes of side length m−1 having disjoint interior, and let xi
be the point in Qi with minimal coordinates and define wi ∈ C(Q) by

wi(x) = w(m(x− xi)) (i = 1, . . . , n̄).
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It follows that for all (αi)
n̄
i=1 ∈ [−1, 1]n̄∥∥∥∥∥
n̄∑
i=1

αiwi

∥∥∥∥∥
C(Q)

≤ 1

2
,

∥∥∥∥∥
n̄∑
i=1

αiwi

∥∥∥∥∥
W r
p (Q)

≤ cmr. (34)

In the sequel we show two lower bounds. For the first one we assume q < ∞. It follows
from (34) that there is a constant c(1) > 0 such that for (αi)

n̄
i=1 ∈ [−1, 1]n̄∥∥∥∥∥∥

(
1 +

n̄∑
i=1

αiwi

)1/q
∥∥∥∥∥∥
W r
p (Q)

≤ c(1)mr

(the notation c(1) is reserved for this particular constant). For α = (αi)
n̄
i=1 ∈ {−1, 1}n̄ put

hα = c(1)−1m−r

(
1 +

n̄∑
i=1

αiwi

)1/q

, H = {hα : α ∈ {−1, 1}n̄} , (35)

thus H ⊂ BWr
p(Q) and |H| = 2n̄. Since the coefficients αi in (35) are uniquely determined by

h ∈ H, we also write αi(h). Let ν be the counting measure on H. By (101) of Section 7,

eran
n (Sq, BWr

p(Q)) ≥
1

2
eavg

2n (Sq, ν). (36)

We estimate eavg
2n (Sq, ν) from below. Let A = ((Li)

∞
i=1, (τi)

∞
i=0, (ϕi)

∞
i=0) be a deterministic algo-

rithm with card(A, ν) ≤ 2n and let N and ϕ be such that A = ϕ ◦ N , see (97) of Section 7.
Then

card(A, ν) =

∫
F

card(A, f)dν(f) =
1

|H|
∑
h∈H

card(A, h) ≤ 2n. (37)

Let H0 := {h ∈ H : card(A, h) ≤ 4n}. It follows from (37) that

|H0| ≥
1

2
|H|. (38)

With Y0 = {N(h) : h ∈ H0} and

Hy = {h ∈ H : N(h) = y} = {h ∈ H0 : N(h) = y} (y ∈ Y0)

we have

e(Sq, A, ν) =
1

|H|
∑
h∈H

|Sq(h)− ϕ(N(h))| ≥ 1

|H|
∑
h∈H0

|Sq(h)− ϕ(N(h))|

=
1

|H|
∑
y∈Y0

∑
h∈Hy

|Sq(h)− ϕ(y)|. (39)

Fix y ∈ Y0, so that y ∈ Rl for some 0 ≤ l ≤ 4n. First we assume l ≥ 1. Let y = (y1, . . . , yl)
and let δx1 = L1 and δxi = Li(y1, . . . , yi−1) (2 ≤ i ≤ l) be the information functionals called for
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this information y1, . . . , yl (see (92), (93), and (96) of Section 7). Let Q0
i be the interior of Qi.

Define

J = {1, . . . , n̄}, Jy = {j ∈ J : {x1, . . . , xl} ∩Q0
j = ∅}.

Taking into account (33), it follows that

|Jy| ≥ n̄− l ≥ n̄− 4n ≥ 4n. (40)

Let h ∈ Hy be an arbitrary element. For each j0 ∈ J \Jy there exists an `0 such that x`0 ∈ Q0
j0

.
Hence

y`0 = h(x`0) = c(1)−1m−r

(
1 +

∑
j∈J

αj(h)wj(x`0)

)1/q

= c(1)−1m−r (1 + αj0(h)wj0(x`0))1/q ,

where wj0(x`0) 6= 0. This shows that

αj0(h) =
(c(1)mry`0)q − 1

wj0(x`0)
=: βj0(y)

is the same for all h ∈ Hy, hence

Hy =

c(1)−1m−r

1 +
∑

j∈J\Jy

βj(y)wj +
∑
j∈Jy

αjwj

1/q

: (αj)j∈Jy ∈ {−1, 1}Jy

 .(41)

If l = 0, then y = k∗, Y0 = {k∗} and Hy = H0 = H (compare (94), (95), and (96) of Section 7),
so with Jy = J , relations (40) and (41) hold, as well.

Let (εi)
n̄
i=1 be independent Bernoulli random variables on a probability space (Ω,Σ,P) with

εi(ω) ∈ {−1, 1} (ω ∈ Ω) and E εi = 0. Now we set for y ∈ Y0, ω ∈ Ω

fy,ω = c(1)−1m−r

1 +
∑

j∈J\Jy

βj(y)wj +
∑
j∈Jy

εj(ω)wj

1/q

(42)

gy,ω = c(1)−1m−r

1 +
∑

j∈J\Jy

βj(y)wj −
∑
j∈Jy

εj(ω)wj

1/q

. (43)

Then fy,ω and gy,ω have the same distribution and

sup
ω∈Ω

max(‖fy,ω‖C(Q), ‖gy,ω‖C(Q)) ≤ cm−r. (44)

Furthermore, (41) implies∑
h∈Hy

|Sq(h)− ϕ(y)| = |Hy|E |Sq(fy,ω)− ϕ(y)|,

which together with (39) yields

e(Sq, A, ν) ≥
∑
y∈Y0

|Hy|
|H|

E |Sq(fy,ω)− ϕ(y)|. (45)
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Using Lemma 3.1 and (44), we derive

E |Sq(fy,ω)− ϕ(y)| = E |Sq(gy,ω)− ϕ(y)| ≥ 1

2
E |Sq(fy,ω)− Sq(gy,ω)|

=
1

2
E
∣∣∣(I|fy,ω|q)1/q −

(
I|gy,ω|q

)1/q
∣∣∣

≥ 1

2q
E max (I|fy,ω|q, I|gy,ω|q)−(q−1)/q

∣∣∣I|fy,ω|q − I|gy,ω|q∣∣∣
≥ cm(q−1)rE

∣∣∣I|fy,ω|q − I|gy,ω|q|∣∣∣. (46)

Recalling (34), (42), and (43), we observe that∣∣∣I|fy,ω|q − I|gy,ω|q|∣∣∣
= c(1)−qm−qr

∣∣∣∣∣∣I
∣∣∣∣∣1 +

∑
j∈J\Jy

βj(y)wj +
∑
j∈Jy

εj(ω)wj

∣∣∣∣∣− I
∣∣∣∣∣1 +

∑
j∈J\Jy

βj(y)wj −
∑
j∈Jy

εj(ω)wj

∣∣∣∣∣
∣∣∣∣∣∣

= c(1)−qm−qr

∣∣∣∣∣I
(

1 +
∑

j∈J\Jy

βj(y)wj +
∑
j∈Jy

εj(ω)wj

)

−I

(
1 +

∑
j∈J\Jy

βj(y)wj −
∑
j∈Jy

εj(ω)wj

)∣∣∣∣∣
= 2c(1)−qm−qr

∣∣∣∣∣∣
∑
j∈Jy

εj(ω)Iwj

∣∣∣∣∣∣ .
Together with (38), (40), (45), (46), and Khintchine’s inequality, this leads to

e(Sq, A, ν) ≥ cm−r
∑
y∈Y0

|Hy|
|H|

E

∣∣∣∣∣∣
∑
j∈Jy

εj(ω)Iwj

∣∣∣∣∣∣ ≥ cm−r−d min
y∈Y0

|Jy|1/2 ≥ cn−r/d−1/2.

Using (36), this implies
eran
n (Sq, BWr

p(Q)) ≥ cn−r/d−1/2.

for 1 ≤ q <∞.
Now we show a second lower bound. Here we assume 1 ≤ q ≤ ∞. Let f0 denote the function

which is identically 0 on Q, set

fi =
wi

‖wi‖W r
p (Q)

(1 ≤ i ≤ n̄),

and define the probability measure ν on the set {fi : 0 ≤ i ≤ n̄} by

ν({f0}) =
1

2
, ν({fi}) =

1

2n̄
(1 ≤ i ≤ n̄).

We have
‖wi‖W r

p (Q) � mr−d/p, ‖wi‖Lq(Q) � m−d/q,
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and therefore

|Sq(fi)| =
‖wi‖Lq(Q)

‖wi‖W r
p (Q)

� n−
r
d

+ 1
p
− 1
q . (47)

Let A be any deterministic algorithm for Sq with card(A, ν) ≤ 2n and let l = card(A, f0). Then
l ≤ 4n. We first assume l ≥ 1. Let (δxi)

l
i=1 be the sequence of information functionals called

by A at input f0 and define

I0 = {i : 1 ≤ i ≤ n̄, fi(xj) = 0 for all 1 ≤ j ≤ l}.

It follows that
A(fi) = A(f0) (i ∈ I0) (48)

and

|I0| ≥ n̄− 4n ≥ n̄

2
. (49)

If l = 0, which means that the output A(f) does not depend on f at all, we put I0 = {1, . . . , n̄}.
In this case (48) and (49) hold trivially.

It follows from (47), (48), and (49) that

e(Sq, A, ν) ≥ 1

2
|Sq(f0)− A(f0)|+ 1

2n̄

n̄∑
i=1

|Sq(fi)− A(fi)|

≥ 1

2n̄

∑
i∈I0

(|A(f0)|+ |Sq(fi)− A(f0)|) ≥ 1

2n̄

∑
i∈I0

|Sq(fi)|

≥ |I0|
2n̄

min
i∈I0
|Sq(fi)| ≥ cn−

r
d

+ 1
p
− 1
q ,

which together with (36) concludes the proof of the lower bound in Theorem 2.3.

5 Arithmetic cost

So far we considered the n-th minimal errors, i.e., the information complexity was established.
This means we limit the number of information functionals (function values). The next question
is: can the resulting algorithms be implemented using a small number of arithmetic operations,
say, O(n) or O(n(log n)α) for some α > 0. We adopt a version of the real number model of
computation, see [11]. By arithmetic operations we mean addition, subtraction, multiplication,
division, and comparison of real numbers, as well as the elementary functions lnx for x > 0 and
exp(x) for x ∈ R, all of them are assumed to be carried out exactly. Moreover, we assume that
a random number generator is available which produces for each call an element of a sequence
of (ideal) independent, uniformly distributed on [0, 1] random variables. We assign arithmetic
cost 1 to each of the described operations. In particular, we can compute xy = exp(y lnx) for
x > 0 and y ∈ R exactly and at arithmetic cost 3.

Let us first take a look at the deterministic case. Here we assume that W r
p (Q) is embedded

into C(Q), that is, (3) holds. Note that by (18) for each fixed ω ∈ Ω the algorithm A1
n,ω(f) =

‖Pl,θ(ω)f‖Lq(Q) is order optimal for Sq. However, to implement it, we have to compute∫
Q

|(Pl,θ(ω)f)(x)|qdx =
2dl∑
i=1

∫
Qi

|ζi(x)|qdx (q <∞) (50)

ess supx∈Q |(Pl,θ(ω)f)(x)| = max
1≤i≤2dl

max
x∈Qi
|ζi(x)| (q =∞), (51)
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where

ζi(x) =
κ∑
j=1

f(xi + 2−l(zj + θ(ω)))ψj(2
l(x− xi)− θ(ω)), (52)

compare (10). The same integral (50) has to be determined for algorithm A2
n,ω, given in (19).

On the other hand, algorithm A3
n,ω, see (32), can be implemented directly using O(n) arithmetic

operations, which settles the case r = 0, p > q in the randomized setting. The case r = 0 in
the deterministic setting and the case r = 0, p ≤ q in the randomized setting are not of interest
here since there is no nontrivial convergence rate, so the zero algorithm is optimal.

If q is an even integer, |ζi(x)|q is a polynomial itself, and we can compute each of the 2dl � n
integrals in (50) exactly in O(1) operations. A similar situation occurs if r = 1, q is arbitrary,
and we use tensor product Lagrange interpolation, because then the ζi are constant.

Now we present and study two algorithms based on bisection that will be used to settle
the case d = 1, r ∈ N, q ∈ R, 1 ≤ q ≤ ∞. The first algorithm approximately determines the
roots of a polynomial ζ and of its derivatives using bisection. We combine the description of
the algorithm with its analysis in order to motivate the respective steps.

Algorithm B = B([a, b], ζ, δ):

Input: 0 < δ < 1, a finite interval [a, b] with a < b, and a polynomial ζ(x) over R.

Output: Let m := deg ζ. The output is an ordered set ([aj, bj] : 1 ≤ j ≤ L) of L ≤ 2m

closed subintervals of [a, b] of nonempty interior, with bj ≤ aj+1 (j = 1, . . . , L − 1) and the
following properties. If m = 0, the output is ([a, b]). If m ≥ 1, no root of the polynomials
ζ, ζ ′, ζ ′′, . . . , ζ(m−1) belongs to ∪Lj=1(aj, bj) and

µ1

(
[a, b] \ ∪Lj=1[aj, bj]

)
≤ δ(b− a), (53)

where µ1 denotes the Lebesgue measure on R1.

Description and analysis of algorithm B : If m = 0, we set B([a, b], ζ, δ) = ([a, b]). If m = 1,
ζ is linear, and we compute its root x∗. If x∗ 6∈ (a, b), we put B([a, b], ζ, δ) = ([a, b]), while if
x∗ ∈ (a, b), we set B([a, b], ζ, δ) = ([a, x∗], [x∗, b]).

For m ≥ 2 we use recursion over the degree. Suppose we have already obtained

B([a, b], ζ ′, δ/2) = ([cj, dj] : 1 ≤ j ≤M) (54)

with the required properties. Now we change the output set by processing the intervals [cj, dj]
consecutively. By (54), ζ(x) is strictly monotone on [cj, dj], thus has at most one root in [cj, dj].
If ζ(cj)ζ(dj) > 0, there is no root of ζ in [cj, dj]. In this case we leave [cj, dj] in the output
set and move to the next interval. If ζ(cj)ζ(dj) ≤ 0, ζ has a unique root x∗ in [cj, dj] and
we use bisection to approximate it. Let k(δ) = dlog2(1/δ)e + 1. We determine a sequence of

subintervals ([cj,k, dj,k])
k(δ)
k=0 of [cj, dj] with x∗ ∈ [cj,k, dj,k] and dj,k − cj,k = 2−k(dj − cj) for all

k as follows: Put [cj,0, dj,0] = [cj, dj]. Furthermore, let 0 ≤ k < k(δ) and assume we already
found [cj,k, dj,k]. If

ζ (cj,k) ζ

(
cj,k + dj,k

2

)
≤ 0, (55)

we set cj,k+1 = cj,k, dj,k+1 =
cj,k+dj,k

2
, otherwise we put cj,k+1 = 1

2
(cj,k + dj,k), dj,k+1 = dj,k.

Having completed the k(δ) bisection steps, we obtain an interval [cj,k(δ), dj,k(δ)] of the desired
size

dj,k(δ) − cj,k(δ) ≤ 2−k(δ)(dj − cj) ≤
δ

2
(dj − cj),



August 30, 2018 16

which contains x∗. Now we replace [cj, dj] by the intervals [cj, cj,k(δ)] and [dj,k(δ), dj]. If one of
them is a one-point set, we omit it. The final set of intervals, say ([aj, bj] : 1 ≤ j ≤ L) is the
output B([a, b], ζ, δ). The number of intervals satisfies L ≤ 2M ≤ 2m. Moreover,

µ1

(
[a, b] \ ∪Lj=1[aj, bj]

)
= µ1

(
[a, b] \ ∪Mj=1[cj, dj]

)
+ µ1

(
∪Mj=1 [cj, dj] \ ∪Lj=1[aj, bj]

)
≤ δ(b− a).

This concludes the recursion step.

There is a function c : N0 → (0,+∞) such that the whole procedure needs not more
than c(deg ζ)dlog2(1/δ)e arithmetic operations. Moreover, if a = a(ω) and b = b(ω) are ran-
dom variables and ζ = ζω is a random polynomial on (Ω,Σ,P), that is, a polynomial over R
whose coefficients are random variables, then the output ([aj(ω), bj(ω)] : 1 ≤ j ≤ L(ω)) is
Σ-measurable in the following sense: L(ω) is Σ-measurable and for each L ∈ N and 1 ≤ j ≤ L
the functions aj(ω) and bj(ω) are Σ-measurable on {ω ∈ Ω : L(ω) = L}.

This is easily seen as follows. First observe that deg ζω is measurable. Hence we can assume
w.l.o.g. that there is an m ∈ N0 such that deg ζω = m for all ω ∈ Ω. Now we use induction over
m. The measurability of ([aj(ω), bj(ω)] : 1 ≤ j ≤ L(ω)) is obvious for m = 0 and m = 1. Next
let m ≥ 2 and assume that the statement holds for m−1. Thus, ([cj(ω), dj(ω)] : 1 ≤ j ≤M(ω))
from (54) is measurable. For a fixed M ∈ N we consider the measurable set {ω : M(ω) = M}
and fix also 1 ≤ j ≤M .

The sets {ω : ζω(cj(ω))ζω(dj(ω)) > 0} and {ω : ζω(cj(ω))ζω(dj(ω)) ≤ 0} are measurable.
On the first set the interval [cj(ω), dj(ω)] remains unchanged, thus measurability is obvious.
Now consider the second set. Here we use induction over k to show that cj,k(ω) and dj,k(ω) are
measurable. For k = 0 this is obvious. Let 0 ≤ k ≤ k(δ)−1 and assume that cj,k(ω) and dj,k(ω)
are measurable. Hence the set of ω ∈ Ω for which (55) holds is measurable. This proves the
measurability of cj,k+1(ω) and dj,k+1(ω), completing the induction over k. Since the set of ω for
which one of the intervals [cj(ω), cj,k(δ)(ω)], [dj,k(δ)(ω), dj(ω)] is a one-point set is measurable,
this also completes the induction over m and the analysis of algorithm B.

Let 0 < δ < 1, n ∈ N, l = dlog ne, ω ∈ Ω, 1 ≤ i ≤ 2l, Qi = [2−l(i− 1), 2−li], and f ∈ F(Q)
(recall that d = 1, thus Q = [0, 1]). With ζi given by (52) we define the polynomial σi by

σi(x) =

{
ζi(x) if K = R
|ζi(x)|2 if K = C

(56)

and let
B(Qi, σi, δ) = ([ai,j, bi,j] : 1 ≤ j ≤ Li).

Note that on each (ai,j, bi,j) the polynomials σi(x) and σ′i(x) have no roots. We set

Qn,δ =
2l⋃
i=1

Li⋃
j=1

(ai,j, bi,j).

Observe that (53) implies
µ1 (Q \Qn,δ) ≤ δ. (57)

Now we can settle the case q =∞, using algorithm B. Since σi(x) is monotone on [ai,j, bi,j],
we have

max
x∈[ai,j ,bi,j ]

|ζi(x)| = max(|ζi(ai,j)|, |ζi(bi,j)|).
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We replace

A1
n,ω(f) = ‖Pl,θf‖L∞(Q) = ess supx∈Q |(Pl,θf)(x)| = max

1≤i≤2l
max
x∈Qi
|ζi(x)|

by

max
1≤i≤2l

max
1≤j≤Li

max(|ζi(ai,j)|, |ζi(bi,j)|) = max
1≤i≤2l

max
1≤j≤Li

max
x∈[ai,j ,bi,j ]

|ζi(x)|

= ‖χQn,δPl,θf‖L∞(Q) := Ã1
n,ω,δ(f). (58)

The next result provides the error analysis of algorithm Ã1
n,ω,δ. For this purpose, as well as

for later use, let us mention the following. For each value of θ the image of the operator Pθ, see
(8), is contained in the space of all polynomials of degree at most max1≤j≤κ degψj, considered
as functions on Q. Since this space is finite-dimensional, the W 1

∞(Q)-norm, the L∞(Q)-norm,
and the L1(Q)-norm are equivalent on it. Therefore we have (compare (9))

‖Pl,θf‖L∞(Q) = max
1≤i≤2l

‖Rl,iPθEl,if‖L∞(Qi) = max
1≤i≤2l

‖PθEl,if‖L∞(Q)

≤ c max
1≤i≤2l

‖PθEl,if‖L1(Q) ≤ c2l max
1≤i≤2l

‖Rl,iPθEl,if‖L1(Qi)

≤ c2l
2l∑
i=1

‖Rl,iPθEl,if‖L1(Qi) = c2l‖Pl,θf‖L1(Q)

and similarly,

‖Pl,θf‖W 1
∞(Q) = max

1≤i≤2l
‖Rl,iPθEl,if‖W 1

∞(Qi) ≤ 2l max
1≤i≤2l

‖PθEl,if‖W 1
∞(Q)

≤ c2l max
1≤i≤2l

‖PθEl,if‖L1(Q) ≤ c22l‖Pl,θf‖L1(Q). (59)

Corollary 5.1. Let r ∈ N, d = 1, 1 ≤ p ≤ ∞. Then there are constants c1, c2, c3 > 0 and a
sequence (δ(n))n∈N such that for all n ∈ N

0 < δ(n) < 1, log(1/δ(n)) ≤ c1 log(n+ 1), (60)

for all f ∈ W r
p (Q) and ω ∈ Ω,

|S∞(f)− Ã1
n,ω,δ(n)(f)| ≤ c2 n

−r+1/p‖f‖W r
p (Q), (61)

and the computation of Ã1
n,ω,δ(n)(f) takes not more than c3n log(n+ 1) operations.

Proof. We choose

δ(n) =
1

2
n−r−2+1/p,

thus (60) holds. Together with (57), (59), and Lemma 3.2 we obtain

|A1
n,ω(f)− Ã1

n,ω,δ(f)|

=
∣∣∣‖Pl,θf‖L∞(Q) − ‖χQn,δ(n)

Pl,θf‖L∞(Q)

∣∣∣ = max
x∈Q
|(Pl,θf)(x)| − max

x∈Qn,δ(n)

|(Pl,θf)(x)|

= max
x∈Q

min
y∈Qn,δ(n)

(|Pl,θf(x)| − |Pl,θf(y)|) ≤ max
x∈Q

min
y∈Qn,δ(n)

|Pl,θf(x)− Pl,θf(y)|

≤ ‖Pl,θf‖W 1
∞(Q) max

x∈Q
min

y∈Qn,δ(n)

|x− y| ≤ c22l‖Pl,θf‖L1(Q) max
x∈Q

min
y∈Qn,δ(n)

|x− y|

≤ c22l‖Pl,θf‖L1(Q)µ1

(
Q \Qn,δ(n)

)
≤ c22l‖Pl,θf‖L1(Q)δ(n)

≤ cn2‖f‖W r
p (Q)δ(n) ≤ cn−r+1/p‖f‖W r

p (Q).
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Now Corollary 3.3 implies (61). The cost estimate follows directly from (58), (60), and the cost
analysis of algorithm B above.

To handle the case q <∞ we need another algorithm, which provides an approximation to∫ b
a
|ζ(x)|γdx for certain polynomials ζ. Let γ ∈ R, 0 < γ <∞. We expand the function zγ on

(0,∞) at the points zk = 3 · 2k−1 (k ∈ Z) into its Taylor series

zγ =
∞∑
n=0

γ(γ − 1) . . . (γ − n+ 1)

n!
zγ−nk (z − zk)n, (62)

where for n = 0 the fraction is to be understood as 1. We have for all n ∈ N0

|γ(γ − 1) . . . (γ − n+ 1)|
n!

≤
γ(γ − 1) . . .

(
γ −

⌈
γ−1

2

⌉
+ 1
)⌈

γ−1
2

⌉
!

:= c(γ) (63)

and for all z ∈ [2k, 2k+1]
zγ−nk |z − zk|n ≤ 2γ(k−1)3−n+γ. (64)

Define the polynomial πk,N for N ∈ N0 and z ∈ R

πk,N(z) =
N∑
n=0

γ(γ − 1) . . . (γ − n+ 1)

n!
zγ−nk (z − zk)n.

From (62), (63), and (64) we conclude

sup
z∈[2k,2k+1]

|zγ − πk,N(z)|

≤ c(γ)2γ(k−1)3γ
∞∑

n=N+1

3−n = c1(γ)2γk3−N , c1(γ) = 2−1−γ3γc(γ). (65)

Algorithm Tγ = Tγ([a, b], ζ, δ, N):

Input: 0 < δ < 1, a finite interval [a, b] with a < b, a polynomial ζ(x) over R which is either
constant or has the property that no root of ζ and ζ ′ is contained in (a, b), N ∈ N0.

Output: A real number Tγ([a, b], ζ, δ, N).

Description of algorithm Tγ : If ζ = ζ0 is constant, we put

Tγ([a, b], ζ, δ, N) = |ζ0|γ(b− a).

Now we assume that ζ is not constant. We define the algorithm for the case that ζ is nonnegative
and strictly increasing on [a, b]. If this is not the case, we replace ζ by

ζ1 = τ0ζ

(
a+ b

2
+ τ0τ1

(
x− a+ b

2

))
(66)

with

τ0 = sign

(
ζ

(
a+ b

2

))
, τ1 = sign

(
ζ ′
(
a+ b

2

))
. (67)
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Compute
k0 = blog2 max(2ζ(a), δ)c, k1 = dlog2 ζ(b)e. (68)

If ko ≥ k1 we set

Tγ([a, b], ζ, δ, N) =


0 if 2ζ(a) ≤ δ∫ b

a

πk0−1,N(ζ(x))dx if 2ζ(a) > δ.
(69)

Now let k0 < k1. By (68), we have

ζ(a) < 2k0 ≤ 2k1−1 < ζ(b) ≤ 2k1 . (70)

For each k = k0, k0 +1, . . . , k1−1 we use bisection as above with dlog2(1/δ)e steps to determine
a subinterval [ck, dk] of [a, b] containing the unique x∗k ∈ (a, b) with ζ(x∗k) = 2k and satisfying

(dk − ck) ≤ δ(b− a).

Define dk0−1 = a, ck1 = b. We will use the intervals ([dk, ck+1])k1−1
k=k0−1 (if α > β, the interval

[α, β] is understood to be the empty set). We set

Tγ([a, b], ζ, δ, N) =



k1−1∑
k=k0

∫
[dk,ck+1]

πk,N(ζ(x))dx if 2ζ(a) ≤ δ

k1−1∑
k=k0−1

∫
[dk,ck+1]

πk,N(ζ(x))dx if 2ζ(a) > δ.

(71)

Lemma 5.2. Under the assumptions on the input stated above the following estimate holds:∣∣∣∣∫ b

a

|ζ(x)|γdx− Tγ([a, b], ζ, δ, N)

∣∣∣∣ ≤ (b− a)

×

(
δγ + ‖ζ‖γL∞([a,b])

(
δ
(

log2(1/δ) + log2 max(‖ζ‖L∞([a,b]), 1) + 2
)

+ c1(γ)3−N
))

, (72)

with c1(γ) given by (65) and (63). Moreover, there is a function c : N0 × (0,∞) → (0,+∞)
such that algorithm Tγ needs not more than

c(deg ζ, γ)(log2(1/δ) + log2 max(‖ζ‖L∞([a,b]), 2))(N + 1)2 (73)

arithmetic operations. Finally, if a(ω) and b(ω) are random variables and ζω is a random
polynomial on (Ω,Σ,P), then Tγ([a(ω), b(ω)], ζω, δ, N) is Σ-measurable.

Proof. If ζ is constant, (72) is trivial. If ζ is not constant, we can assume without loss of
generality that ζ is nonnegative and strictly increasing on [a, b], since neither the integral nor
the norms in (72) change if we replace ζ by ζ1 from (66)–(67). It follows from (68) that

k1 − k0 ≤ log2(1/δ) + log2 max(‖ζ‖L∞([a,b]), 1) + 2. (74)

First consider the case k0 ≥ k1. We distinguish between two subcases: If 2ζ(a) ≤ δ, this means
ζ(b) ≤ δ, hence ∫ b

a

|ζ(x)|γ ≤ δγ(b− a),
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and (72) is obvious. On the other hand, if 2ζ(a) > δ, it follows from (68) that

2k0 ≤ 2ζ(a) < 2ζ(b) ≤ 2k1+1, (75)

which in view of the assumption k0 ≥ k1 implies k0 = k1. Then (75) gives

2k0−1 ≤ ζ(a) < ζ(b) ≤ 2k0 . (76)

Using (65) and (76), we obtain∣∣∣∣∫ b

a

|ζ(x)|γdx− Tγ([a, b], ζ, δ, N)

∣∣∣∣
≤ (b− a) sup

z∈[2k0−1,2k0 ]

|zγ − πk0−1,N(z)| ≤ c1(γ)2γ(k0−1)3−N ≤ c1(γ)ζ(b)γ3−N ,

and hence (72) holds.
Now we consider the case k0 < k1. Using also (70) it follows that

[ζ(dk), ζ(ck+1)] ⊆ [2k, 2k+1] (k0 ≤ k ≤ k1 − 1) (77)

and furthermore

µ1

(
[ck0 , b] \ ∪k1−1

k=k0
[dk, ck+1]

)
≤ δ(k1 − k0)(b− a). (78)

If 2ζ(a) ≤ δ, it follows from (68) that ζ(ck0) ≤ 2k0 ≤ δ, hence∫ ck0

a

|ζ(x)|γdx ≤ δγ(b− a). (79)

From (65), (70), (71), (77), (78), and (79) we conclude∣∣∣∣∫ b

a

|ζ(x)|γdx− Tγ([a, b], ζ, δ, N)

∣∣∣∣
≤

∫ ck0

a

|ζ(x)|γdx+

∫
[ck0

,b]\∪k1−1
k=k0

[dk,ck+1]

|ζ(x)|γdx

+

k1−1∑
k=k0

∫
[dk,ck+1]

||ζ(x)|γ − πk,N(ζ(x))| dx

≤ δγ(b− a) + (b− a)δ(k1 − k0)ζ(b)γ + (b− a) max
k0≤k≤k1−1

sup
z∈[2k,2k+1]

|zγ − πk,N(z)|

≤ (b− a)(δγ + δ(k1 − k0)ζ(b)γ + c1(γ)2γ(k1−1)3−N)

≤ (b− a)(δγ + δ(k1 − k0)ζ(b)γ + c1(γ)ζ(b)γ3−N), (80)

which together with (74) gives (72).
If 2ζ(a) > δ, then (68) implies 2k0−1 ≤ ζ(a). It follows that

[ζ(a), ζ(ck0)] ⊆ [2k0−1, 2k0 ]. (81)
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Hence from (71), (77), (78), and (81), we infer that∣∣∣∣∣
∫ b

a

|ζ(x)|γdx−
k1−1∑

k=k0−1

∫
[dk,ck+1]

πk,N(ζ(x))dx

∣∣∣∣∣
≤

∫
[a,b]\∪k1−1

k=k0−1[dk,ck+1]

|ζ(x)|γdx+

k1−1∑
k=k0−1

∫
[dk,ck+1]

||ζ(x)|γ − πk,N(ζ(x))| dx

≤ (b− a)δ(k1 − k0)ζ(b)γ + (b− a) max
k0−1≤k≤k1−1

sup
z∈[2k,2k+1]

|zγ − πk,N(z)|

≤ (b− a)(δ(k1 − k0)ζ(b)γ + c1(γ)ζ(b)γ3−N).

Using (74), this implies (72).
To prove the cost estimate, we note that to compute the integrals in (69) and (71), we have

to determine the coefficients of the polynomials πk,N(ζ(x)). With k fixed, this can be done by
successively computing the coefficients of the polynomials (ζ(x)− zk)n for n = 0, . . . , N , which
takes c(deg(ζ), γ)(N + 1)2 operations. Together with (74) this gives (73). Measurability of Tγ
is proved in a similar way as the measurability of B. We omit the details.

Now we are ready to handle the case 1 ≤ q <∞. Set

γ =

{
q if K = R
q
2

if K = C

and let d = 1, r ∈ N, n ∈ N, l = dlog ne, and ω ∈ Ω. We modify algorithms A1
n,ω and A2

n,ω

defined in (15) and (19) as follows. Let 0 < δ < 1, N ∈ N0, 1 ≤ i ≤ 2l, Qi = [2−l(i− 1), 2−li],
let σi be given by (56), and let

B(Qi, σi, δ) = ([ai,j, bi,j] : 1 ≤ j ≤ Li).

Recall that on each (ai,j, bi,j) the polynomials σi(x) and σ′i(x) have no roots. We replace∫
Q

|(Pl,θf)(x)|qdx =
2l∑
i=1

∫
Qi

|ζi(x)|qdx =
2l∑
i=1

∫
Qi

|σi(x)|γdx

by
2l∑
i=1

Li∑
j=1

Tγ([ai,j, bi,j], σi, δ, N),

thus the modified algorithms are

Ã1
n,ω,δ,N(f) =

∣∣∣∣∣∣
2l∑
i=1

Li∑
j=1

Tγ([ai,j, bi,j], σi, δ, N)

∣∣∣∣∣∣
1/q

. (82)

and

Ã2
n,ω,δ,N(f) =

∣∣∣∣∣∣
2l∑
i=1

Li∑
j=1

Tγ([ai,j, bi,j], σi, δ, N) +
1

n

n∑
i=1

(|f(ξi)|q − |(Pl,θf)(ξi)|q)

∣∣∣∣∣∣
1/q

. (83)

The Σ-measurability for each f ∈ W r
p ([0, 1]) is easily checked based on the measurability

properties of the algorithms B and Tγ discussed above.
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Lemma 5.3. Let r ∈ N, d = 1, 1 ≤ p ≤ ∞, and 1 ≤ q < ∞. Then there are constants
c1, c2 > 0 such that for all f ∈ BW r

p (Q), n ∈ N, ω ∈ Ω, 0 < δ ≤ 1/2, N ∈ N0∣∣∣∣∣∣
∫
Q

|(Pl,θf)(x)|qdx−
2l∑
i=1

Li∑
j=1

Tγ([ai,j, bi,j], σi, δ, N)

∣∣∣∣∣∣ ≤ c1

(
δ + δγ + δ log2(1/δ) + 3−N

)
and the computation of Ã1

n,ω,δ,N(f) needs not more than c2n(N + 1)2 log2(1/δ) arithmetic oper-
ations.

Proof. Since, by assumption, r ≥ 1, we conclude from (13) of Lemma 3.2

‖Pl,θf‖L∞(Q) ≤ c‖f‖W r
p (Q) ≤ c.

Consequently,

max
1≤i≤2l,1≤j≤Li

‖σi‖L∞([ai,j ,bi,j ]) ≤ max
(
‖Pl,θf‖L∞(Q), ‖Pl,θf‖2

L∞(Q)

)
≤ c (84)

and

‖χQ\Qn,δPl,θf‖Lq(Q) ≤ ‖Pl,θf‖L∞(Q)‖χQ\Qn,δ‖Lq(Q) ≤ cµ1 (Q \Qn,δ)
1/q ≤ cδ1/q. (85)

We estimate, using (72) of Lemma 5.2, (84), and (85),∣∣∣∣∣∣
∫
Q

|(Pl,θf)(x)|qdx−
2l∑
i=1

Li∑
j=1

Tγ([ai,j, bi,j], σi, δ, N)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∫
Q

|(Pl,θf)(x)|qdx−
2l∑
i=1

Li∑
j=1

∫ bi,j

ai,j

|ζi(x)|qdx

∣∣∣∣∣∣
+

∣∣∣∣∣∣
2l∑
i=1

Li∑
j=1

∫ bi,j

ai,j

|ζi(x)|qdx−
2l∑
i=1

Li∑
j=1

Tγ([ai,j, bi,j], σi, δ, N)

∣∣∣∣∣∣
≤

∫
Q\Qn,δ

|(Pl,θf)(x)|qdx+
2l∑
i=1

Li∑
j=1

∣∣∣∣∣
∫ bi,j

ai,j

|σi(x)|γdx− Tγ([ai,j, bi,j], σi, δ, N)

∣∣∣∣∣
≤ ‖χQ\Qn,δPl,θf‖

q
Lq(Q) + δγ + max

1≤i≤2l,1≤j≤Li
‖σi‖γL∞([ai,j ,bi,j ])

×
(
δ
(

log2(1/δ) + log2 max(‖σi‖L∞([ai,j ,bi,j ]), 1) + 2
)

+ c1(γ)3−N
)

≤ c
(
δ + δγ + δ log2(1/δ) + 3−N

)
.

Using (73) of Lemma 5.2 and (84), the number of arithmetic operations can be bounded from
above by

c2l
(

log2(1/δ) + max
1≤i≤2l

log2 max(‖σi‖L∞(Qi), 2)
)

(N + 1)2 ≤ cn(N + 1)2 log2(1/δ).
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Corollary 5.4. Let r ∈ N, d = 1, 1 ≤ p ≤ ∞, and 1 ≤ q < ∞. Then there are constants
c1, . . . , c4 > 0 and sequences (δ(n))n∈N and (N(n))n∈N such that for all n ∈ N and ω ∈ Ω the
following hold:

0 < δ(n) ≤ 1/2, log(1/δ(n)) ≤ c1 log(n+ 1), N(n) ∈ N0, N(n) ≤ c2 log(n+ 1), (86)

sup
f∈BWr

p (Q)

∣∣∣Sq(f)− Ã1
n,ω,δ(n),N(n)(f)

∣∣∣ ≤ c3n
−r+max(1/p−1/q,0), (87)

and for all f ∈ BW r
p (Q) the computation of Ã1

n,ω,δ(n),N(n)(f) needs not more than c4n(log(n+1))3

arithmetic operations.

Proof. For n ∈ N put

α = 2q (r −max(1/p− 1/q, 0)) , β = q(r −max(1/p− 1/q, 0)),

δ(n) =
1

2
n−α, N(n) = dβ log3(n+ 1)e ,

thus (86) holds. Let n ∈ N and ω ∈ Ω. By (6) of Lemma 3.1 and Lemma 5.3 we have

|A1
n,ω(f)− Ã1

n,ω,δ(n),N(n)(f)|

≤

∣∣∣∣∣∣
∫
Q

|(Pl,θf)(x)|qdx−
2l∑
i=1

Li∑
j=1

Tγ([ai,j, bi,j], σi, δ(n), N(n))

∣∣∣∣∣∣
1/q

≤ c
(
δ(n) + δ(n)γ + δ(n) log2(1/δ(n)) + 3−N(n)

)1/q

≤ c
(
n−α/q + n−γα/q + n−α/(2q) + n−β/q

)
≤ c

(
n−α/(2q) + n−β/q

)
≤ cn−r+max(1/p−1/q,0).

Now Corollary 3.3 implies (87). By Lemma 5.3, the number of arithmetic operations does not
exceed

cn(N(n) + 1)2 log2(1/δ(n)) ≤ cn log(n+ 1)3.

Corollary 5.5. Let r ∈ N, d = 1, 1 ≤ q < p ≤ ∞, and let p1 satisfy (20) and (21). Then there
are constants c1, . . . , c4 > 0 and sequences (δ(n))n∈N and (N(n))n∈N such that for all n ∈ N and
ω ∈ Ω, relation (86) is satisfied,

sup
f∈BWr

p (Q)

(
E |Sq(f)− Ã2

n,ω,δ(n),N(n)(f)|p1

)1/p1

≤ c3n
−r+max(1/p−1/q,−1/2), (88)

and for all f ∈ BW r
p (Q) the computation of Ã2

n,ω,δ(n),N(n)(f) needs not more than c4n(log(n+1))3

arithmetic operations.
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Proof. Put

α = 2q (r −max(1/p− 1/q,−1/2)) , β = q(r −max(1/p− 1/q,−1/2)),

δ(n) =
1

2
n−α, N(n) = dβ log3(n+ 1)e ,

so (86) holds. Using (6) of Lemma 3.1 and Lemma 5.3, we derive∣∣∣A2
n,ω(f)− Ã2

n,ω,δ(n),N(n)(f)
∣∣∣

=

∣∣∣∣∣
∣∣∣∣ ∫

Q

|(Pl,θf)(x)|qdx+
1

n

n∑
i=1

(|f(ξi)|q − |(Pl,θf)(ξi)|q)
∣∣∣∣

−
∣∣∣∣ 2l∑
i=1

Li∑
j=1

Tγ([ai,j, bi,j], σi, δ(n), N(n)) +
1

n

n∑
i=1

(|f(ξi)|q − |(Pl,θf)(ξi)|q)
∣∣∣∣
∣∣∣∣∣
1/q

≤

∣∣∣∣∣∣
∫
Q

|(Pl,θf)(x)|qdx−
2l∑
i=1

Li∑
j=1

Tγ([ai,j, bi,j], σi, δ(n), N(n))

∣∣∣∣∣∣
1/q

≤ c
(
n−α/q + n−γα/q + n−α/(2q) + n−β/q

)
≤ c

(
n−α/(2q) + n−β/q

)
≤ cn−r+max(1/p−1/q,−1/2).

Together with Proposition 3.4 this yields (88). The arithmetic cost estimate follows from that
in Corollary 5.4, since the cost of Ã2

n,ω,δ(n),N(n) differ from that of Ã1
n,ω,δ(n),N(n) by not more than

cn, compare (82) and (83).

Let us note that if K = R and q ∈ 2N0+1, we do not need algorithm Tγ. Since the polynomial

ζi(x) does not change its sign on (ai,j, bi,j), |ζi(x)|q is a polynomial, hence,
∫ bi,j
ai,j
|ζi(x)|qdx can

be computed exactly. We replace∫
Q

|(Pl,θf)(x)|qdx =
2dl∑
i=1

∫
Qi

|ζi(x)|qdx

by

2dl∑
i=1

Li∑
j=1

∫ bi,j

ai,j

|ζi(x)|qdx =

∫
Qn,δ

|(Pl,θf)(x)|qdx = ‖χQn,δPl,θf‖
q
Lq(Q).

Using similar methods as above one can show that Corollaries 5.4 and 5.5 also hold for these
algorithms.

6 Extensions, comments, questions

First let us discuss the case that Q ⊂ Rd is a bounded Lipschitz domain. For the deterministic
case Proposition 2.1 holds true, see [12] and [7], thus, by the previously mentioned result of
Wasilkowsi [15], Corollary 2.2 follows.
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For the randomized setting, let us first note that Theorem 2.3 also holds for bounded
Lipschitz domains. The lower bound proof carries over directly, because one can define the
respective functions wi simply on any cube contained in Q. For the upper bounds one has
to replace the operator Pl,θ defined in Section 3 by the respective one from [7], which has the
required properties, see Proposition 3.3 there.

Next we consider the task of computing norms of Sobolev spaces W s
q (Q) with s ∈ N (with

Q still a Lipschitz domain). So let 1 ≤ s ≤ r and assume that W r
p (Q) is embedded in W s

q (Q).
This is the case if and only if

1 ≤ q <∞ and r−s
d
≥ max

(
1
p
− 1

q
, 0
)

or
q =∞, 1 < p <∞, and r−s

d
> 1

p

or
q =∞, p ∈ {1,∞}, and r−s

d
≥ 1

p


(89)

(see [1], Th. 5.4). The solution operator is

S(s)
q (f) = ‖f‖W s

q (Q) =


∑
|α|≤r

‖Dαf‖qLq(Q)

1/q

if q <∞

max
|α|≤r
‖Dαf‖L∞(Q) if q =∞.

In the deterministic case we readily obtain from [15], [12], and [7]

Corollary 6.1. Assume that (89) holds. Then

edet
n (S(s)

q , BW r
p (Q)) � n−(r−s)/d+max(1/p−1/q,0) if (3) holds

edet
n (S(s)

q , BW r
p (Q) ∩ C(Q)) � 1 if (3) does not hold.

In the randomized case our results imply an upper bound. We apply the algorithms Aιn,ω
(ι = 1, 2) from (15) and (19) to partial derivatives of f . Hence, we allow that the algorithm
can also use values of partial derivatives of order not exceeding s, that is,

Λ = {δαx : x ∈ Q,α ∈ Nd
0, |α| ≤ s},

with δαx (f) = (Dαf)(x). We define an algorithm Aι,sn,ω with ι = 1 for p ≤ q and ι = 2 for p > q
as follows

Aι,sn,ω(f) =

∑
|α|≤s

Aιn,ω(Dαf)q

1/q

.

If ι = 1, we set v = q. If ι = 2, that is, p > q, let p1 be such that (20) and (21) are fulfilled and
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set v = p1. By the help of Corollary 3.3 and Proposition 3.4 we obtain for q <∞(
E
∣∣S(s)

q (f)− Aι,sn,ω(f)
∣∣v)1/v

=

E

∣∣∣∣∣
( ∑
|α|≤s

Sq(D
αf)q

)1/q

−
(∑
|α|≤s

Aιn,ω(Dαf)q
)1/q

∣∣∣∣∣
v
1/v

≤

E

(∑
|α|≤s

|Sq(Dαf)− Aιn,ω(Dαf)|q
)v/q

1/v

≤ c

E
∑
|α|≤s

|Sq(Dαf)− Aιn,ω(Dαf)|v
1/v

≤ c
∑
|α|≤s

(
E |Sq(Dαf)− Aιn,ω(Dαf)|v

)1/v ≤ cn−(r−s)/d+max(1/p−1/q,−1/2).

With the respective modifications this also gives the case ι = 1, q =∞. Thus, we obtained an
upper bound on the randomized minimal error. Matching upper and lower bounds remain an
open problem though.

Corollary 6.2. Assume that (89) holds. Then

eran
n (S(s)

q , BWr
p(Q)) � n−(r−s)/d+max(1/p−1/q,−1/2).

Now let us discuss the case r = 0 a little further. Let 1 ≤ q < p ≤ ∞. and let (Q,Q, %) be
an arbitrary probability space. Here for f ∈ Lp(Q,Q, %) we set

Sq(f) = ‖f‖Lq(Q,Q,%)

A3
n,ω(f) =

(
1

n

n∑
i=1

|f(ξi(ω))|q
)1/q

,

where ξi are independent Q-valued random variables on a probability space (Ω,Σ,P) with dis-
tribution %. Of course, this is the same as considering f as a random variable over (Q,Q, %) and

approximating Sq(f) = (E |f |q)1/q by
(

1
n

∑n
i=1 |fi|q

)1/q
, where fi are independent realizations of

f . Then Corollary 3.5 holds true in this general situation. Indeed, interpreting If as

If =

∫
Q

f(x)d%(x),

the proof of Corollary 3.5 (in other words, the proof of Proposition 3.4, with Pl,θ replaced by
the zero operator) remains valid. As a consequence, we have

Proposition 6.3. Assume that p ≥ q. Then there is a constant c1 > 0 such that

eran
n (Sq, BLp(Q,Q,%)) ≤ c1n

max(1/p−1/q,−1/2) (n ∈ N). (90)

Moreover, if there is a constant c2 > 0 such that for each n ∈ N there are disjoint (Qn,i)
n
i=1 ⊂ Q

with mini %(Qn,i) ≥ c2/n, then there is a constant c3 > 0 with

eran
n (Sq, BLp(Q,Q,%)) ≥ c3n

max(1/p−1/q,−1/2) (n ∈ N). (91)
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Proof. The generalization of Corollary 3.5 discussed above yields (90) for p > q, while for p = q
this relation is obvious. With r = 0 the lower bound proof of Theorem 2.3 in Section 4 goes
through under the assumptions of Proposition 6.3, provided we replace Qi by Qn̄,i and set
wi = 1

2
χQn̄,i . This gives (91).

Conclusion. Summarizing, we can say that the information complexity of norm compu-
tation is well understood in the deterministic setting, due to Wasilkowski’s result [15] on the
equivalence to approximation (not only for standard information, but also for arbitrary linear
information) and numerous results on approximation. In the present paper the randomized in-
formation complexity for standard information is settled for some classical norms and function
spaces. In particular, these results show that such an equivalence to approximation does not
hold in the randomized setting. Important classical cases remain open (see, e.g., Corollary 6.2).
The randomized setting for linear information was not touched at all. Finally, the arithmetic
complexity of norm computation is far from being clear both in the deterministic and random-
ized setting, even in many of those cases of classical function spaces, where the information
complexity is known. See also [16], p. 273, for a related open problem.

7 Appendix: General algorithms and minimal errors

In this section we recall the needed notions from information-based complexity theory [10, 14],
following [4, 5] and put in a form convenient for this paper. Let P = (F,G, S,K,Λ) be an
abstract numerical problem as described in Section 2. We introduce the classes of deterministic
and randomized algorithms. Let F(Λ, K) denote the set of all functions from Λ to K. In the
sequel it will be convenient to consider f ∈ F also as a function on Λ with values in K by
setting f(λ) := λ(f).

A deterministic algorithm for P is a tuple A = ((Li)
∞
i=1, (τi)

∞
i=0, (ϕi)

∞
i=0) such that L1 ∈ Λ,

τ0 ∈ {0, 1}, ϕ0 ∈ G and for i ∈ N

Li+1 : Ki → Λ, τi : Ki → {0, 1}, ϕi : Ki → G

are arbitrary mappings. Given f ∈ F(Λ, K), we associate with it a sequence (λi)
∞
i=1 with

λi ∈ Λ, defined as follows:

λ1 = L1, λi = Li(λ1(f), . . . , λi−1(f)) (i ≥ 2). (92)

Define card(A, f), the cardinality of A at input f , to be 0 if τ0 = 1. If τ0 = 0, let card(A, f) be
the first integer n ≥ 1 with

τn(λ1(f), . . . , λn(f)) = 1, (93)

if there is such an n. If τ0 = 0 and no such n ∈ N exists, put card(A, f) = +∞. Observe that
we have the following alternative: Either

card(A, f) = 0 for all f ∈ F(Λ, K) (94)

or
card(A, f) ≥ 1 for all f ∈ F(Λ, K). (95)
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For f ∈ F(Λ, K) we define the output A(f) of algorithm A at input f as

A(f) =

{
ϕ0 if card(A, f) = 0 or card(A, f) =∞
ϕn(λ1(f), . . . , λn(f)) if 1 ≤ card(A, f) = n <∞.

Define k∗ = K and K0 = {k∗}. (This is a technical definition which guarantees that K0 is a
one-element set whose element does not belong to any Ki for i ≥ 1.) Let K∞ = ∪∞i=0K

i and
define a mapping, the information operator, N : F(Λ)→ K∞ as

N(f) =

{
k∗ ∈ K0 if card(A, f) = 0 or card(A, f) =∞
(λ1(f), . . . , λn(f)) ∈ Kn if 1 ≤ card(A, f) = n <∞.

(96)

Furthermore, define a mapping ϕ : K∞ → G by setting for a ∈ K∞

ϕ(a) =

{
ϕ0 if a = k∗

ϕn(a1, . . . , an) if a = (a1, . . . , an) ∈ Kn, n ∈ N.

This gives a convenient representation A = ϕ ◦N , that is,

A(f) = ϕ(N(f)) (f ∈ F(Λ, K)). (97)

Now let F ⊆ F(Λ, K) be a nonempty subset. We define

card(A,F ) = sup
f∈F

card(A, f).

Furthermore, given a mapping S : F → G, the error of A in approximating S on F is defined
as

e(S,A, F,G) = sup
f∈F
‖S(f)− A(f)‖G.

(both quantities can assume the value +∞). Given n ∈ N0, we define Adet
n (F,G) as the set of

those deterministic algorithms A for P which satisfy

card(A,F ) ≤ n.

The deterministic n-th minimal error of S is defined for n ∈ N0 as

edet
n (S, F,G) = inf

A∈Adet
n (F,G)

e(S,A, F,G).

It follows that no deterministic algorithm that uses at most n function values can have a smaller
error than edet

n (S, F,G).
A randomized algorithm for P is a tuple

A = ((Ω,Σ,P), (Aω)ω∈Ω),

where (Ω,Σ,P) is a probability space and Aω is a deterministic algorithm for P for each ω ∈ Ω.
Given n ∈ N0 and F ⊆ F(Λ, K), we define Aran

n (F,G) as the set of those randomized algorithms
A for P which possess the following properties: for each f ∈ F the mapping

ω ∈ Ω→ card(Aω, f)
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is Σ-measurable and satisfies
E card(Aω, f) ≤ n.

Moreover, the mapping
ω ∈ Ω→ Aω(f) ∈ G

is Σ-to-Borel measurable and essentially separably valued. Given a mapping S : F → G, the
error of A ∈ Aran

n (F,G) as an approximation of S on F is defined as

e(S,A, F,G) = sup
f∈F

E ‖S(f)− Aω(f)‖G. (98)

The randomized n-th minimal error of S is defined for n ∈ N0 as

eran
n (S, F,G) = inf

A∈Aran
n (F,G)

e(S,A, F,G).

Consequently, no randomized algorithm that uses (on the average) at most n information
functionals has an error smaller than eran

n (S, F,G). Note that the definition (98) involves the
first moment. This way lower bounds have the strongest form, because respective bounds for
higher moments follow by Hölder’s inequality.

Given ε > 0, the information complexity of S is defined by

nset
ε (S, F,G) = min{n ∈ N0 : eset

n (S, F,G) ≤ ε} (set ∈ {det, ran}), (99)

if there is such an n, and
nset
ε (S, F,G) = +∞, (100)

if there is no such n. Thus, nset
ε (S, F,G) is essentially the inverse function of the minimal error,

and it follows that any deterministic, respectively randomized algorithm with error ≤ ε needs
at least ndet

ε (S, F,G), respectively nran
ε (S, F,G) samples.

Now let ν be a probability measure on F(Λ, K) whose support, denoted by supp ν, is a
finite set. For a deterministic algorithm A put

card(A, ν) =

∫
F(Λ,K)

card(A, f) dν(f)

e(S,A, ν,G) =

∫
F(Λ,K)

‖S(f)− A(f)‖G dν(f)

and let A ∈ Aavg
n (ν,G) be the set of all deterministic algorithms A with card(A, ν) ≤ n, where

n ∈ N0. Define the average n-th minimal error as

eavg
n (S, ν,G) = inf

A∈Aavg
n (ν,G)

e(S,A, ν,G).

If supp ν ⊆ F , then

eran
n (S, F,G) ≥ 1

2
eavg

2n (S, ν,G). (101)

This is the well-known relation between randomized and average case setting, going back to
Bakhvalov, see [10, 13].
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[14] J. F. Traub, G. W. Wasilkowski, and H. Woźniakowski, Information-Based Complexity,
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