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Abstract

We continue the complexity analysis of parametric definite and indefi-
nite integration given by the authors in [2]. Here we consider anisotropic
classes of functions, including certain classes with dominating mixed deriva-
tives. Our analysis is based on a multilevel Monte Carlo method developed
in [2] and we obtain the order of the deterministic and randomized n-th
minimal errors (in some limit cases up to logarithms). Furthermore, we
compare the rates in the deterministic and randomized setting to assess
the gain reached by randomization.

1 Introduction

The complexity of definite parametric integration was studied in [10], [6], and
[16], while in [2] the complexity of both definite and indefinite parametric inte-
gration was considered. Parametric definite integration is a problem intermediate
between integration and approximation. Parametric indefinite integration can be
viewed as a model for the solution of parametric initial value problems in the
sense that it is a partial, but typical case, and some of the methods developed
here will be used in the study of parametric initial value problems, see [3].

This paper is a continuation of [2] and we study both definite and indefi-
nite integration. So far definite parametric integration was considered only for
isotropic classes and, in [6], for a specific anisotropic class (Sobolev case with
no smoothness in the integration variable). Indefinite parametric integration was
only studied for C". In [2] we gave a general (multilevel) scheme for Banach space
valued integration of functions belonging to

C"(X) N (Y), (1)



where X and Y are Banach spaces such that Y is continuously embedded into
X, from which the upper bounds for parametric integration in the C"-case were
derived.

In the present paper we further explore the range given in (1) by consider-
ing classes of functions with dominating mixed derivatives and other types of
non-isotropic smoothness. In contrast to the C" case, these classes allow to treat
different smoothnesses for the parameter dependence and for the basic (nonpara-
metric) integration problem. We want to understand the typical behaviour of
the complexity in these classes and the relation between the deterministic and
randomized setting, this way clarifying in which cases and to which extend ran-
domized methods are superior to deterministic ones.

The paper is organized as follows. In Section 3 we recall the needed algorithms
and results for Banach space valued definite and indefinite integration from [2].
In Section 4 we consider parametric definite and indefinite integration and obtain
the main results. Applications to various smoothness classes are given in Section
5, together with some comments on the relation between the deterministic and
the randomized setting.

2 Preliminaries

We denote N = {1,2,...} and Ny = {0, 1,2,...}. Given Banach spaces X,Y, we
let Z(X,Y) be the space of bounded linear operators from X to Y, equipped with
the usual norm, and we write Z(X) if X =Y. The dual space of X is denoted by
X*, the identity mapping on X by [Ix, and the closed unit ball by Byx. The norm
of X is denoted by || - ||, other norms are distinguished by subscripts. We assume
all considered Banach spaces to be defined over the same scalar field K = R or
K=C.

We often use the same symbol for possibly different constants. Given two
sequences of nonnegative reals (a,)neny and (by,)nen, the notation a,, < b, means
that there are constants ¢ > 0 and ng € N such that for all n > ng, a, < cb,.
Moreover, we write a,, < b, if a,, < b, and b, < a,. We also use the notation
ap Xiog by if there are constants c;,ca > 0, ng € N, and 6;,0, € R with 6, < 0,
such that for all n > ng

c1by(log(n 4+ 1)) < a, < cobp(log(n +1))%.

Throughout the paper log means log,.
For 1 < p < 2 a Banach space X is called to be of (Rademacher) type p, if
there is a constant ¢ > 0 such that for all n € N and x1,...,2, € X

n
i=1

p n
<&yl (2)
k=1



with (¢;)7, being independent random variables satisfying P{e; = —1} = P{e; =
+1} = 1/2. The type p constant 7,(X) of X is the smallest constant ¢ > 0 satis-
fying (2), and 7,(X) = oo, if there is no such ¢. We refer to [11] for background
on this notion. The space Ly, (M, i), where (M, ) is an arbitrary measure space
and p; < o0, is of type p with p = min(py,2). Furthermore, there is a constant
¢ > 0 such that 7(¢7) < c(log(n + 1))/2 for all n € N.

Let Q = [0,1]¢ and let C"(Q, X) denote the space of all r-times continuously
differentiable functions f : () — X equipped with the norm

ol f(t)
ot ||’

== max
1 fller@.x) et X e

For r = 0 we write C°(Q, X) = C(Q, X), which is the space of continuous X-
valued functions on @, and if X =K, we write C"(Q) and C(Q).

Let X ® Y be the algebraic tensor product of Banach spaces X and Y and
let X ®, Y be the injective tensor product, defined as the completion of X ® Y
with respect to the norm

A <Z x; ®yi> = sup Z<$i7u> {yi; v} |.

UEB x*,VEBy* i—1

Background on tensor products can be found in [4] and [12]. For Banach spaces
X1,Y; and operators T € £ (X, X1), U € Z(Y, Y1), the algebraic tensor product
TRU : X®Y — X; ®Y extends to a bounded linear operator T'® U €
f(X ®)\ Y, X1 ®)\ }/1) with

1T ® Ul z(xervxiea) = 1T Lz xo lUlLzvy)-
We also recall that for each Banach space X the canonical isometric identification
C(Q,X) =X ®,C(Q), (3)
holds. It follows that, in particular, for d > 1
C([0,1]) = €([0,1]) @x - -~ @ C([0,1]).
Based on this, we define for r,m € N
Prt=rPrte---o Pt e 2(C(0,1),

where P7l e Z(C([0,1])) denotes composite with respect to the partition of
[0,1] into m intervals of length m™! Lagrange interpolation of degree r. Setting
rd = {% :0<1 < k}d for k € N, it follows that P7:? interpolates on I'Y, . We
will use the well-known fact that there are constants c¢i,cy > 0 such that for all
m €N

1P 2@y <c1, sup |If = Prfllew) < com™. (4)
feBer(q)
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Next we recall some notation from information-based complexity theory [15,
14], see also [7, 8] for the precise notions used here. Let F' be a nonempty set, G a
normed linear space, S : F' — G an arbitrary mapping, let K be a nonempty set,
and let A be a set of mappings from F to K. We interpret F' as the set of inputs,
S as the solution operator, that is, the mapping that sends the input f € F' to
the exact solution Sf, and A is understood as the class of admissible information
functionals. Thus, the tuple & = (F,G, S, K, A) describes the abstract numerical
problem under consideration. In this paper we always have K = K.

A deterministic algorithm A for &2 is a mapping A : F — G, which is built
from values of information functionals on f € F in an adaptive way (all details
can be found in [7, 8]). The result of the algorithm Af is the approximation to
Sf. The error of A is given by

(S, A, F) = sup | Sf — Af
feF

Let card(A, f) be the number of information functionals used by A at input f
and put
card(A, F') = sup card(A, f).

fer

Now the deterministic n-th minimal error is defined for n € Ny by

edt(S,F) = inf (S, A, F).
card(A,F)<n
A randomized algorithm for & is a family A = (A, )ucq, where (2,X,P) is a
probability space and for each w € €, A, is a deterministic algorithm. The
parameter w represents the randomness in the algorithm A = (A,),cq. The
error of A is given by

e(S, A, F) = supE||Sf — A flc.
feF

Setting
card(A, F) = sup E card(A,, f),
fer

the randomized n-th minimal error is defined for n € Ny by

e™(S,F)= inf (S, AF).

card(A,F)<n

So edet(S) F), respectively e(S, F), is the minimal possible error among all
deterministic, respectively randomized algorithms that use at most n information
functionals. Since any deterministic algorithm can be viewed as a special case of

a randomized algorithm with a one-point probability space 2 = {wg}, we always
have ern(S, F) < edet(S, F).



3 Banach space valued integration and a multi-
level method

Given r € Ny and a Banach space X, we introduce the definite integration oper-
ator Sg¥ : C(Q, X) — X by

S5f= [ s (7€ c@.X) o)
and the indefinite integration operator S;* : C(Q, X) — C(Q, X) by

(ST () = o (wdu (t €@, feC(Q,X)), (6)
where [0,¢] = []%,[0, 4], t = (t:)%, € Q. Let S, (t = 0,1) be the scalar version
of SX, that is, X = K. Then, in the sense of (3), we have S¥ = Ix ® S,.

First we recall algorithms for the scalar cases of the integration problems (5)
and (6). For r = 0 and n € N the standard Monte Carlo method for definite
integration is given by

w0 =15 few) ec)

where & : Q — @ (i = 1,...,n) are independent, uniformly distributed on @
random variables on some complete probability space (Q2, X, P). If r > 1, we put
k= {nl/ dw and
AVLE =SB ) + AL (f = BS).

which is the Monte Carlo method with separation of the main part. Finally we
set A% = (A?;L)weﬂ.

For indefinite integration we recall the algorithm from Section 4 of [9]. Let
n € N, and put m = {(n—i— 1)ﬁ-‘ For [ = (Iy,...,l;) € N we define U; by

UZ — (Pl,l _ Pl,l ) ® .. ® (Pl,l _ Pl,l )® Pl,l

ml1 mi1—1 mld—1 mld—1-1 mld?

(P, :=0) and set

Vo= U

leNg, |l|=2d—1
where |l| =l + - - - + 4. Moreover, we define

l 1 1
m:<m,...,md), FmZ:lelx...Xled7



and for i = (iy,...,iq) € N® with 1 <4, <mh (1 <k <d)

-1 4 ig—1 g
Qi = T | T ia|
Let &7 :Q — Qi (Il =2d—1,1<i < m!) be independent uniformly dis-
tributed on ();; random variables on a complete probability space (€2, X, P). De-
fine g;,, € loo(L',1) by

gi.) = Y |Qylf(&iw) (el

5:Qf,jg[05t]
where the sum is set to zero if there is no j with Q;; C [0,¢]. Finally we put
AT = (AV7) e With
ALf= ) U
leNg, |l|=2d—1

and, for r > 1, with k = [n'/4],
Ayt = S$i(Bf) + AL(f = BY).
Now we let r,7; € Ny and consider integration of functions from the set

Bergx) N Beriq,y),

where Y is a Banach space continuously embedded into X. We identify elements
of Y with their images in X. The following scheme was developed in [2], based on
the multilevel Monte Carlo approach from [5, 10]. Let (1})7°, C “Z(X), lo, l; € Ny,
lo <y, gy, .. ,ny, €N, and define an algorithm A® = (Afj))weg for . € {0,1}
as follows:

I
AV = TyeAy o+ Y (M-Ti)eAyL, (feC@.X). (7)

I=lp+1

To state the next result, we need some more notation. Let J : Y — X be the
embedding map, put Go(X) = X, G1(X) = C(Q, X), and

Xi=cx(Ti(X)) (€No), Xiy=cx((li=Ti0)(X)) (LeN),  (8)

where cly denotes the closure in X. The following is a slight extension of Propo-
sition 3 of [2]. We omit the proof, since it is essentially the same as in [2], except
that in (10) for a part of the series the deterministic estimate is applied. This is
needed to obtain precise rates in Section 4.



Proposition 3.1. Let 1 < p < 2, r,;ry € Ny, and ¢ € {0,1}. Then there are
constants c1,co > 0 such that for all Banach spaces X, Y, and operators (1})7°,
as above, for all ly,l; € Ng with ly < 1y, and for all (nl)ﬁlzlo C N the so-defined

algorithm AY satisfies

sup 15X f =AY flla,x)
feBCT(Q,X)chrl(Q,Y)
< T = T zvix) + allTio Lz ng
lh
ta Y T =TTl ™ (@ e Q) (9)
I=lp+1

and for all I* € Ny with o < 1* <y

1/p
sup (E ||SLXf - Ac(f)f||gL(X)>

feBerq,x)NBeri(q,v)

—r/d—1+1/p
lo

< T =Ty J || 2 x) + camp(Xig) | Th || 2(x)m
l*
ter Y (X )Ty — o) I zyny ™4
I=lp+1
51
ter Y T = Tie) |l zvm ™ (10)

I=l*+1

4 Parametric integration

Let dy € N, Qp = [0,1]%. Now we study definite and indefinite integration of
functions depending on a parameter s € Qy. Let 19,7 € Ny and let C™"(Qy, Q)

be the space of continuous functions f : Qg X  — K having for a = (ag, o),

alel f(s,t)

ap € N o) € N? with |ag| < 79, || < 7 continuous partial derivatives Seor

endowed with the norm

el f (s, 1)
OJs0 gt

Ifllcror@og =  max sup‘
‘040|§7“0,\Oé1|§r SEQOJEQ

Let furthermore r; € Ny and put

F = BCOW(QQ,Q) N Berom (Qo,Q)-

Note that for r < r; we have

Beor(qe,q) N Berori(Qo,@) = Berom(@o,Q) = Boori (go.q) N Beror(@o,q)

hence we can assume without loss of generality that r» > ry.
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The definite parametric integration operator %y : C(Qy x Q) — C(Qp) is
given by

yof /fst SEQ()),

and the indefinite parametric integration operator .} : C'(Qp X Q) — C(Qo X Q)
by
(AN = [ flsu)du (s€QoteQ)
[0,1]

We consider standard information consisting of values of f, so the class of infor-
mation functionals is A = {0s; : s € Qo,t € Q}, where d5:(f) = f(s,t). In the
terminology of Section 2, the definite parametric integration problem is described
by the tuple

HO (Bco T(Qo,Q) N BCTO "1(Qo,Q)>» (QO) %7 K A)

and the indefinite parametric integration problem by

H1 (BCOr Q0,Q) N BC"“O "1(Qo,Q)» (QO X Q) yl;K A)

The following theorem gives the complexity of definite and indefinite paramet-
ric integration. The case of definite parametric integration with F' = Ber(gyxq) is
already contained in [10], see also [2]. Definite parametric integration in Sobolev
classes was considered in [6, 16]. The case of indefinite parametric integration
with F' = Bergexq) Was first studied in [2]. Below A and V mean logical con-
junction and disjunction, respectively.

Theorem 4.1. Let ro,r,r1 € No, 7 > 11, d,dy € N, v € {0,1} . Then the
deterministic minimal errors satisfy

(S, F) = §omsn
_ro _Tro o
n h 2 el (S, F) 2n d(logn)o T if =1 >0 (11)
_o ‘
edet (S F)=xn if p=42=0Vv 2,
where
=z r
do
v = o . (12)
PR
Moreover, the randomized minimal errors fulfill
e (S F)=<n-i s f Gt Ar=n
e (.7, F) =< n~"(logn)? if R>H A4S AT>T
_ra _ro T 43
n” % (logn)t X e (.S, F) Xn b(logn)n? if =141 (13)
_To ro_ "1 .
e (S, F)=<n (logn)d 4 if G< <Gtz
_To _ro o
n M < e (S, F) <= n % (loglogn)® ™! i G=7>0
_mo .
(S, F)y=<n 4 if F=9=0Vv <y



with
To
b r 1
v = ﬁ(‘*‘_)- (14)
wta—a\d 2

For the proof we need some preparations and auxiliary statements. To connect
parametric integration with Banach space valued integration considered in Section
3 we set X = C(Qo), Y = C™(Qp), thus C(Qo x Q) = C(Q, X) and .7, = S (@)
(t=0,1). Moreover,

Beor(Qe.q) N Berori@o) = Ber@.o@o)) N Beri@,om0(Qo))

Ber@x) N Ben@y)-
Let 7o = max(rg, 1) and define for [ € Ny
T, = Pp™ € 2(C(Qo)).- (15)

This way the algorithm A% defined in (7) becomes

I
A(L) _ P'f’27d0 ® AT 4 Z (P;2,do _PT27d0> ® AT

w 2lo nyg,w 2l-1 np,w”
I=lp+1

For f € C(Qp x Q) this means
(1) _ r2,do L,
A o (<Anl07w<fs)>serdozzo>

1
+ Y (pp -t ((&‘JL(L)) )
s ’l‘221

l:lo+1

where for s € Qg we used the notation f; = f(s, - ). Observe that

I
card(AY) < cZnZQdol (we Q). (16)
I=lo

First we estimate the error of A%Y. Recall the notation Go(C(Qo)) = C(Qo)
and G1(C(Qo)) = C(Qo x Q).

Proposition 4.2. Let rg, 7,17 € Ny, 7 > r1, 0 € {0,1}. Then there are constants
c1, 2 > 0 such that for all ly, 1l € Ng with lg < Iy and for all (nl)ﬁlzlo C N we have

sup .7, f — AY fllc.c@o))
fer
I
< 27l 4 clnl_or/d + ¢ Z 2’r°lnl_“/d (we ) (17)
I=lp+1



and for ly < 1* <[y

. 1/2
sup (E ||..f — AY f1I2, co)
fer

< 62277“011 +C2(l0+1)1/2n;0r/d71/2

* I
ey Y (I )Rl TR o) N gl e (18)
I=lp+1 I=l*+1

Proof. By (15) and (4),

ITill @ < ey 1T = Tidlzen@oc@) < 227, (19)
where J : C™(Qy) — C(Qo) is the embedding, and by (8) and (15),

X; = P*(C(Qo)) = Py ™ (loo(T,)).

2

Consequently, X;_; C X; for [ > 1, thus, X;_;; C X; and therefore
T2o(Xi1) < 1(X)). (20)
Moreover, it was observed in [2], proof of Proposition 4, that
72(X) < ema(loo (T0,))) < c(l+ 1), (21)

Now relations (17) and (18) are a direct consequence of Proposition 3.1 together
with (19), (20), and (21). O

The following lemma contains the key estimates for the upper bound proof.
It is formulated in a general way, which allows some shortcuts in the proof of
Theorem 4.1. Moreover, it enables us to use these estimates directly for the
analysis of parametric initial value problems in [3], where different but related
smoothness classes are considered.

Let 3, 0,51 € R. Given lo, I*,11 € Ng with lp < 1" < l; and (ny)jL,, C N, we
define

I
M(lo by (m)iy,) = 27200 g P D a7l (22)
I=lp+1

l*
E(lo, ", L, (n))y,) = 27%%0 4 (I + 1), 7+ ) (14 1)1/ el 7
I=lp+1
1

+ Y by A+1/z. (23)
I=l*+1
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Lemma 4.3. Let 3,5y,061 € R with By > 0 and f > (1 > 0. Then there are
constants c¢i_3 > 0 such that for each n € N with n > 2 there is a choice of
lo,l1 € No, lo < 1y, and (my)j,, C N such that

Iy
an2dol < can (24)
I=lo
and
M (lo, 1y, (m)isy,)
n-v if  Bo> B
< ¢ n‘ﬁo(log TZ)BO—H Zf ﬁo = 51 >0 (25)
n~Po if Bo=p1=0V By <pb,
where
Bof3
Bt BB (26)

Moreover, if 31 > 1/2, then for each n € N with n > 2 there is a choice of
lo, 1,1, €Ny, lp < 1* <1y, and (m)lL, , C N satisfying (24) and

E(l[), l*> lla (nl)é;lo)

nh if Bo>p=0
n="(logn)/? if Bo>01 A B>
< ¢3¢ nh(logn)tt3/? if Bo=/ (27)

n=%(logn)=tH1/2 if B —1/2 < By < B
n~%(loglogn)™*' if By =0 —1/2.

Proof. In the case By = 0 the statements trivially follow from (22) and (23) with
lo =11 = 0 and ng = 1. Therefore, in the sequel we can assume (3, > 0. Let
n € N, n > 2, and put

_ | logn _ b= 0
N Pl 2
(recall that log always means log,). We note that (28) implies
_ Bola
Wbz s A (29)
hence l
(3= 00— o) = =B 5 g,
and thus
Bl = o) = Bolo + Br(li — lo). (30)

11



Let o € {0,1}, dg, 1 > 0 to be fixed later on and set

n, = 2%l (31)
n = Rll_|_1)—02d0(l1—l)—50(l—l0)—51(l1—l)—‘ (I=1y+1,...,0). (32)

This gives

ll ll
an2d0l S Czdoll 4 (ll + 1)70’ Z 2d0117§0(l7l0)751(l17l) S cn, (33)

I=lg I=lp+1
provided dg > 0 or 4; > 0 or ¢ = 1. By (30) and (31) we have
nl_oﬁ — 9—Ado(li=lo) < 9—Bodolo—PB1do(l1~lo) < 9—Bodolo—PF1do(l1~lo)+P161 (l1—lo) (34)

and, using (32), for [y < <,

Q—Bodolnl—ﬁl < (ll_|_1)051Q—ﬁodol—ﬂldo(h—l)+ﬁ160(l—lo)+5151(ll—l)_ (35)

Furthermore,
—Bodol — Brdo(ly — 1) + Broo(l — o) + B1o1(lh — 1)
= —Podolo — (Bodo — B1d0) (I — lo) — Bi(do — 01)(li = 1) (o <1< 1h). (36)
By (22) and (34 36),
M (lo, Ly, (ma)iy, )

I
< 9—Podoly + (ll + 1)061 Z 9—Podolo—(Bodo—F160)(I=lo)—F1(do—d1) (L ~1) (37)
I=lo

If By > (1, we set ¢ = §; = 0 and choose dy > 0 in such a way that Fydy —
109 > Prdo. From (37) we obtain

I
]\4(l07 L, (nl)élzlo) < 9—Podols + Z 9—Bodolo—(Bodo—B180)(I1—lo)—Brdo(lr—1)
I=lp
< 9—Bodol1 + ¢2~Podolo—PF1do(li—lo) (38)

Note that by (26), (28), and (29)

B Bo(B =Bl S1Boly
Bolo + Br(ly — lo) —ﬁo T 3-4 Bo + —50 T 3-5
BoBil o
m — o =vli — By (39)
and, since [y > (1, fof
B 0
ey (40)

12



It follows from (28) and (38-40) that
M(lg, ly, (nl)glzlo) < 9 Podoli o pomvdoh < povdolt < oY,

This together with (33) proves (25) for Gy > ;.
If o =p1 >0, weset 0 =1, dp =d; =0, and get from (28) and (37)

51
M(ZO, lh, (nl)élzzo) < 9—Podoly + (ll + 1)[30 Z 9—Bodolo—Podo(I~lo)=Podo(l1~1)
1=lg

< C(ll + 1)ﬂo+12*ﬂodoll < Cn*ﬁo (log n)ﬁOJrl'

Combining this with (33) gives the respective estimate of (25).

Since we assumed (3 > 0, it remains to consider the case By < (31, where we
set 0 = 0p = 0 and choose d; > 0 in such a way that 5 (dy — d1) > Bodo. By (28)
and (37),

51
M(lo, lh, (nl>§1:lo) < 9—Podols Z 9—Bodolo—PBodo(I=lo)—PB1(do—d1)(l1—1)
I=lg
< 9—Podols + 2~ Podolo—Bodo(l1—lo) < enPo

This together with (33) completes the proof of (25).

Now we turn to the proof of (27) and assume that §; > 1/2. If 5 > (51 = £,
then we set [* = [, 0 = ; = 0 and choose &y > 0 satisfying Gody — 5109 > [(1dp.
It follows from (28) that o = 0. Then (23), (34), and (35) give

E(l(), ll, lla (nl)§1=l0>
I

< 2—Bod0l1+2—51d0l1 +Z(l+1)1/22—,6’0dol—ﬂ1d0(l1—l)+,8160l
=1

I
< 2*ﬁodol1+Z(l+1)1/22*(50d0*5150)l*51d0(11*l)
=0

< 2*,30d011 + szﬁdoll < Cn*ﬁ)

which together with (33) proves the first case of (27).
If (Bo > 01 A B> (1) or By = 1, we choose [* = [y, get from (22-23)

E(lm Iy, 1y, (nl)?:lo) < (L+ 1)1/2M(lo7 l, (nl)?:lo);

and the desired results follow from (28) and the respective cases of (25).
It remains to consider the case

B —1/2 < By < . (41)

13



Here we make another choice of the parameters (nl)?:lo (while [y and [; remain
the same, given by (28)). Let o € {0,1}, d1,d2 > 0, and I* € Ny with [p <1* <[4
to be fixed later on and set

n, = 2do(l1—lo)’ (42)
m o= [200-D=8ED) (=1, ), (43)
no= [(h = )R OEmeENT= k) (49)

In the sequel we need the following estimate, which results from (28) and (42-44).

1 * I
Z n[2d0l S 02d0l1 + Z 2d011—51(l*—l) _|_ (ll . l* + 1)—0’ Z 2d0l1—62(l—l*)
I=lo I=lp+1 I=l*+1

< cn (45)
whenever (6; > 0Ad2 > 0) or (6 =1 A >0). Using (30) and (42), we obtain

nl—oﬁ — 9—Bdo(li~lo) < 9—Bodolo—Pido(l1—lo) < 9—Bodol—Prdo(l1—lo)+B161 (1" —lo) (46)

Denote 3y = ; — 1/2. From (43-44) we get

2*/301101“;51 Bodol—PB1do(l1—1)+B161(1* 1) (ZO <l< l*) (47)

< 27
2—Bodoln;52 S (ll _ I + 1)0522—50d0l—52d0(11—l)+,3252(l—l*) (l* <1 S ll) (48)
Moreover, we have for [y <[ < [*

—Bodol — Brdo(ly — 1) + 161 (1" = 1)
= —fBodolo — Brdo(ly — I*) — Bodo(l — lo) — Bu(do — 61)(I* = 1) (49)

and for *+1 <1<

—Bodol — Bado(ly — 1) + Bado(l — 17)
= —fodol™ — Bado(ly — 1) — (Bodo — B2d2) (1 = I7). (50)

Now (23) and (46-50) imply

E<l0a l*7 l17 (nl)glzlo) S Q_BOdOll + El + E27 (51>
where
l*
E, = Z([ + 1)1/22—50d010—ﬁ1d0(l1—l*)—ﬂodo(l—lo)—51(d0—51)(l*—l) (52)
I=ly
Iy
B, = (ll —IF 4+ 1)0/32 Z 9—Bodol* —P2do(l1—1)=(Bodo—P202) (1=1") (53)
I=l*+1
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Put

o [l 0] o

and observe that the assumption 5y > 0, (28), and (54) imply that there is a
constant ¢ € N such that for n > ¢

Since for n < ¢y the estimate (27) trivially follows from (51-53) by a suitable
choice of the constant, we can assume n > ¢y, and thus (55). Using (41), we
choose §; > 0 in such a way that Sydy < B1(do —01). Then by (52), (54), and (28)

El < C(ll + 1)1/22_ﬁ0d010_ﬁld0(11—l*)—,é’oclg(l*—lo)
= ¢(ly + 1)1/227Podoli+(Bodo=Brdo)(=1") < (], 4 1)Po=Fr+1/29=fodols

< en P (logn)h—AH1/2, (56)

Now we deal with E and distinguish between two subcases of (41). If 5; —1/2 <
Bo, we set 0 = 0 and choose dy > 0 in such a way that fady < Body — (209 (recall
that §y = 1 — 1/2). Then, using (28), (53), and (54),

B, < 2~ Podol* =B2do(li=1") _ .9—Fodoli+(Bodo—PFado)(l1—1")
< szﬁodoh(ll + 1)ﬁ0*51+1/2 < cn~Po (log n)ﬁo*ﬁ1+1/2_ (57)
Combining (51) and (56-57), and taking into account (45), we obtain the fourth

case of (27). If 51 —1/2 = 3y (and thus, fs = f3y), we set 0 = 1 and §, = 0. Here
we have

Ey < c(ly —I* + 1) Pdols < op= (Jog log n)P T, (58)

The last case of (27) is now a consequence of (51), (56), (58), and (45).
[

Proof of the upper bounds in Theorem 4.1.
We derive the upper bounds in (11) and (13) from (17), (18) of Proposition
4.2 and Lemma 4.3. To deal with (11) we set

r To 1
ﬁ da BO d07 ﬂl d ) ( )
which together with (26) and (12) gives for ro/dy > r1/d
BoB 2_2 ’ 5
botB—P  EHi-E (90)
Furthermore, note that (17) and (22) imply
Sup 172F = A fllewci@n < e M (lo, b, (m)iy,). (61)
S

15



Now the upper bounds in (11) follows from (16), (24-25), and (59-61). Finally
we consider (13) and put

r 1 70 ri 1
= — — —_ — —_ — — 2
B p + 5’ Bo d’ B + (62)

which gives for ro/dy > 1 /d + 1/2
BB &l
fo+tB—01 F+i—7

We conclude from (18) and (23) that for any [* with [p < * <;

v =

1/2 * 1
?Up (EHyf A( f||Gb C(Qo)) ) / S CE(ZOal 7l17(nl>§:lo)‘ (64)
eF

With this, the upper estimates in (13) are a consequence of (16), (24), (27), and
(62-64), except for the last case of (13), which follows directly from the respective

case of the deterministic setting (11).
[

For the proof of the lower bounds we let g Z 0 be a C* function on R% with
support in Qo and ¢; a C* function on R¢ with support in () and fQ 1(t)dt # 0.

Let mo,m; € N, let Qo (i = 1,...,m) be the subdivision of Qy into m@ cubes
of disjoint interior of sidelength mgy"' and let Q1 ; (j = 1,...,m{) be the respective

subdivision of ). Let s;, respectively ¢;, be the point in Qoz, respectively Q1,5

with minimal coordinates. Define for s € Qp, t € @, 1 =1,. mo yj=1,...,m¢

©0,i(s) = po(mo(s —s:)), ©1,;() = @1(ma(t —t;)),

and
Q/Jij(&t) = SOO,i(S)SOl,j(t)'

Denote
mOml_ ZZ(SU%J' ij -1 1], i=1,. mo,j—l il
=1 j=1

Lemma 4.4. Let v € {0,1}. Then there are constants c1,co > 0 such that for all
mg, my,n € N with

mdom?d > 4n (65)

we have
NI W) 2 (96)
CR G A comy; * min (m{, log(mg + 1))1/2 : (67)
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Proof. Define Sy : C(Qy x @) — K to be the integration operator

Sof = | JGs.0dst (€ C@Qox Q)
Then
eget(‘sﬂw \IIO ) > eiet(s% \IIO )

mo,mi1 mo,mi
Moreover, standard results from [15], Ch. 4.5, give
edet(Sy, W0 ) > ¢,

mo,mi1

which implies (66). The bound (67) was shown for .# in [10], see the proof of
Proposition 5.1 and, in particular, relations (48) and (58), combined with Lemma
5 there. Since .% is a particular case of .} (in other words, .#; reduces to .7,

see [8] for a formal definition), the lower bound also holds for .#.
[

We proceed by providing another technical estimate, which is again formu-
lated in somewhat general terms, also in view of further application in [3]. For
¥, Y0, 71 € R we define

YY0,Y1 — 3 -y —0,,~ M 0
Yo = min (m1 Mg 0my )\Ifmo,ml. (68)

Lemma 4.5. Let v € {0,1} and v,v,71 € R with v >0 and vy > v, > 0. Then
there are constants ci,co > 0 such that for each n € N with n > 2 there is a
choice of mg, my € Ny fulfilling (65) and

de o, n- if v0/do > m/d
sz = af e R Z

where vs is defined by

vy = Yoy (69)

Yod+ (v —m)do

Furthermore, for each n € N with n > 2 there is a choice of mg, m; € Ny such
that (65) holds and

€£Lan ({%7 \I;’Y:’Yof)/l)

mo,mi
n/A=1/2 if y/do>n/d+1/2 Ny=m
> ¢ n~i(logn)'/? if y/do>n/d+1/2 Ny>m
= ) nldo(logm)e/dom /iy fd < o fdo < i fd+1/2
n 0/ if  vo/do < mi/d.
with

Yod + (v —m)do
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Proof. Let n € N, n > 2. We start with the deterministic setting. First consider

the case vo/dp > 1 /d and put
Y71 Y0
mgy = 2 ’Vn’YodJr(’Y*’Yl)do-‘ , mp = 2 ’Vn'yodJr(’Y*’Yl)do-‘ .

It follows that m@m¢ > 4n and

Yoy

T mg 'my ) > en” 0HF0-% = cn

min (m; .

This together with (66) and (68) yields
AN ) = n
Next suppose vo/do < 71/d. Here we put
mo =4 (nl/dﬂ , mq = 1.
Clearly, mgom‘f > 4n and
min (m; ", mg °m;") > en /b,
therefore, by (66) and (68)

eie“(%, \I;%Wom) > cn~0/do

mo,mi1

Now we turn to the randomized setting. First we consider the case vy/dy >

7 /d+ 1/2. Define mg, m; as in (71). Then we have

. d 12 > ¢ for=m
m1n(m1,log(m0 + 1)) = { C(log n)1/2 if v>m

- ___d/2
mld/Q > cn a6

thus, using (67) and (72),

6:?11((%, \I;%'YO:’YI)

mo,mi1
__oly+d/2) v 1 _
cn 0dt0—mdy = enTd 2 if y=m
= __vo(y+d/2) .
cn” 0= (logn)/? = en~1(logn)'/? if v > .

Next we consider the case v, /d < 7yo/dy < 71/d + 1/2. Here we put
n 1/do
=2 =2 [(logn)"/4
e {(logn) —‘ - [z )"},
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which again implies mj®m¢ > 4n. Furthermore, we have

min(m?, log(mo 4+ 1))¥2 > c(logn)*/?,
m;"? > c(logn)" /2
min (mlf'y, ma%m;%) > cp 0/ (log n)’YO/dO*'Yl/d.

Combining this with (67) gives

eran(;ﬂ“ \Imvom) > n—0/do (log n)vo/doﬂl/d_

n mo,mi1

Finally, let 7o/dy < 1 /d. Here we use the choice (73) and have
min(m?, log(mg + 1))/% > .
This together with (74) yields

ezan(xy \Iﬂmm> > n—0/do

mo,mi

Proof of the lower bounds in Theorem 4.1.
Observe that there is a constant ¢ > 0 such that for all mg, m; € N

: —r —7r0,.,,—T1 0
cmin (my", mg"m; )\Ifmom1 C F.

Consequently, by (68),

(S, F) > e (S, Uy (mg,my € N),

mo,mi1

where set € {det,ran}. Setting v =, 79 = ro, 71 = 71, we have by (12) and (69),
for To/do > Tl/d

v . roTr . 2_2 T v
3 - o r o7 )
T0d+(T—T1)d0 d—[;‘i‘;l_gd
and, by (14) and (70), for ro/dy > r1/d + 1/2
d/2 @ 1
Vy = TO(T+ / ) = 7 Cio " <i+—> = U9.
T0d+(T—T1)d0 %‘i‘a_g d 2

Now Lemma 4.5 yields the lower bounds.

19



5 Some particular classes and comments

If ry = r, then F' = Beror(Q,,q), Which is a class of dominating mixed smoothness,
more precisely, the smoothness with respect to the parameter variables s and the
smoothness with respect to the variables ¢ are combined in such a way.

Corollary 5.1. Let ro,r € Ng, r1 =71, d,dy € N, 1 € {0,1}. Then

eiet(tSﬁL;F) xlog n—min(ﬁ,%)
).

Let us compare the order of the deterministic and randomized minimal errors
neglecting logarithmic factors. If the smoothness ry with respect to the parameter
satisfies ro/dy > r/d + 1/2, then the order of €/**(.7,, F) is the same as that of
the randomized minimal errors for (nonparametric) integration of functions from
C™(Q) and is by n~'/? faster than parametric integration in the deterministic
setting. If r/d < ro/dy < r/d+1/2, the randomized rate is still superior, but the
gap becomes smaller and reaches zero when rq/dy < r/d.

Next consider the case vy = 0. This leads to the class

C«(ro,O)A(O,r)(QO7 Q) = C’TO’O(QO, Q) N CO’T(QO, Q)

of continuous functions f : Qg x Q — K having for ag € Ngo with |ag| < rg and
ool f(s,t) o 201 (sit)

050 ot™1 ’

s
o

ran - —miﬂ(z+ly
e (S, F) =i 1 dT2

for a; € N& with |o;| < r continuous partial derivatives
endowed with the norm

1 lctro om0 o)
= max (HfHCm,O(QO,Q), HfHCO”“(QmQ))

2rcs1)

12 745

= max(max sup ‘ S

,max sup
|l <ro seQo,teQ

le1|<r seQo,te@

Thus, here we consider separate differentiability with respect to the s- and t-
variables. Before we state the result, we want to mention a closely related sub-
class. Let C"7(Qy, Q) denote the class of continuous functions possessing contin-

. . . =1 . .
uous partial derivatives gsa(f 8(:;? for all o € Ngo, o) € Ng satisfying % + @ <1

(with the convention § =0 and £ = +o0 for ¢ > 0), equipped with the norm
191 I
rour = max su —
Clro ](QO:Q) ‘C:ig‘—l—%gl SGQO,It)GQ asaoatal

For ro = r this is just the class C"(Qo, Q). Clearly, we have
Crr(Qo, Q) € CUONON(Q, Q) (75)
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and
HfHC[TO’T](QO,Q) Z HfHC(rO,O)/\(O,r)(QmQ).

In general, the inclusion in (75) is strict, see [13, 1].

Corollary 5.2. Let ro,r € Ny, d,dy € N, v € {0,1} and let Fy be any set with

Beiror(go0) € Fi € Botoorom(0p.0)- (76)
Then

eSS F) <oy nT

ey (L F) <oy nT,
with

&8

55
_l’_
a3
s
<
-
o
V
[a)

vs = a (77)
0 if ro=0
o
ve — ﬁdig (i+32) ¥ &>3 (78)
r i n<s

Proof. The upper bounds follow from (76) and Theorem 4.1. For the proof of
the lower bounds we observe that there is a constant ¢ > 0 such that for all
mo,m; € N, ¢ € U0

mo,m1

[l ctrori(@ox @)

Qg
< cmax {771'&0'771'0(1| Cap € NP oy € N, lao] }
o
lagl log | e
= cmax{(mgo) i (m’l") r :onGN ,a; € Ng, m—i— }
To T
< cmax (mg’, mj)
and therefore
cmin(m; ", mg") W), C Btror1(o,0)-
Arguing as in the proof of the lower bounds of Theorem 4.1 gives the desired
result. ]

Note that for ro = r we recover the results of [2], with the rates

7“+§ ; r 1
Ue — T U — drdo lf %>§
PTd+dy P ] oy r<l
do do — 2°
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Now we compare the exponents vs of the deterministic setting (77) and vg of the
randomized setting (78). We assume 7y > 0, otherwise both exponents are zero.

First consider the case ro/dy > 1/2. If r = 0, then vs = 0, vg = 1/2, so
the randomized rate is by the exponent 1/2 superior to the (trivial) deterministic
one. For r > 0 the gap is smaller than 1/2, but it is never zero. The advantage
of randomization can be arbitrarily close to 1/2 (for large parameter smoothness
70/do or small t-smoothness r/d).

If ro/dy < 1/2, we have

:
i "o

ro r Y Y
g do do

Us

so also in this case the gain by randomization is never zero, furthermore, for small
r/d it comes close to r¢/dy, and it reaches this value only for r = 0.
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