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Abstract

We continue the complexity analysis of parametric definite and indefi-
nite integration given by the authors in [2]. Here we consider anisotropic
classes of functions, including certain classes with dominating mixed deriva-
tives. Our analysis is based on a multilevel Monte Carlo method developed
in [2] and we obtain the order of the deterministic and randomized n-th
minimal errors (in some limit cases up to logarithms). Furthermore, we
compare the rates in the deterministic and randomized setting to assess
the gain reached by randomization.

1 Introduction

The complexity of definite parametric integration was studied in [10], [6], and
[16], while in [2] the complexity of both definite and indefinite parametric inte-
gration was considered. Parametric definite integration is a problem intermediate
between integration and approximation. Parametric indefinite integration can be
viewed as a model for the solution of parametric initial value problems in the
sense that it is a partial, but typical case, and some of the methods developed
here will be used in the study of parametric initial value problems, see [3].

This paper is a continuation of [2] and we study both definite and indefi-
nite integration. So far definite parametric integration was considered only for
isotropic classes and, in [6], for a specific anisotropic class (Sobolev case with
no smoothness in the integration variable). Indefinite parametric integration was
only studied for Cr. In [2] we gave a general (multilevel) scheme for Banach space
valued integration of functions belonging to

Cr(X) ∩ Cr1(Y ), (1)
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where X and Y are Banach spaces such that Y is continuously embedded into
X, from which the upper bounds for parametric integration in the Cr-case were
derived.

In the present paper we further explore the range given in (1) by consider-
ing classes of functions with dominating mixed derivatives and other types of
non-isotropic smoothness. In contrast to the Cr case, these classes allow to treat
different smoothnesses for the parameter dependence and for the basic (nonpara-
metric) integration problem. We want to understand the typical behaviour of
the complexity in these classes and the relation between the deterministic and
randomized setting, this way clarifying in which cases and to which extend ran-
domized methods are superior to deterministic ones.

The paper is organized as follows. In Section 3 we recall the needed algorithms
and results for Banach space valued definite and indefinite integration from [2].
In Section 4 we consider parametric definite and indefinite integration and obtain
the main results. Applications to various smoothness classes are given in Section
5, together with some comments on the relation between the deterministic and
the randomized setting.

2 Preliminaries

We denote N = {1, 2, . . . } and N0 = {0, 1, 2, . . . }. Given Banach spaces X, Y , we
let L (X, Y ) be the space of bounded linear operators from X to Y , equipped with
the usual norm, and we write L (X) if X = Y . The dual space of X is denoted by
X∗, the identity mapping on X by IX , and the closed unit ball by BX . The norm
of X is denoted by ‖ · ‖, other norms are distinguished by subscripts. We assume
all considered Banach spaces to be defined over the same scalar field K = R or
K = C.

We often use the same symbol for possibly different constants. Given two
sequences of nonnegative reals (an)n∈N and (bn)n∈N, the notation an � bn means
that there are constants c > 0 and n0 ∈ N such that for all n ≥ n0, an ≤ cbn.
Moreover, we write an � bn if an � bn and bn � an. We also use the notation
an �log bn if there are constants c1, c2 > 0, n0 ∈ N, and θ1, θ2 ∈ R with θ1 ≤ θ2

such that for all n ≥ n0

c1bn(log(n+ 1))θ1 ≤ an ≤ c2bn(log(n+ 1))θ2 .

Throughout the paper log means log2.
For 1 ≤ p ≤ 2 a Banach space X is called to be of (Rademacher) type p, if

there is a constant c ≥ 0 such that for all n ∈ N and x1, . . . , xn ∈ X

E
∥∥∥ n∑
i=1

εixi

∥∥∥p ≤ cp
n∑
k=1

‖xi‖p, (2)
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with (εi)
n
i=1 being independent random variables satisfying P{εi = −1} = P{εi =

+1} = 1/2. The type p constant τp(X) of X is the smallest constant c ≥ 0 satis-
fying (2), and τp(X) =∞, if there is no such c. We refer to [11] for background
on this notion. The space Lp1(M, µ), where (M, µ) is an arbitrary measure space
and p1 < ∞, is of type p with p = min(p1, 2). Furthermore, there is a constant
c > 0 such that τ2(`n∞) ≤ c(log(n+ 1))1/2 for all n ∈ N.

Let Q = [0, 1]d and let Cr(Q,X) denote the space of all r-times continuously
differentiable functions f : Q→ X equipped with the norm

‖f‖Cr(Q,X) = max
α∈Nd0, |α|≤r, t∈Q

∥∥∥∥∥∂|α|f(t)

∂tα

∥∥∥∥∥.
For r = 0 we write C0(Q,X) = C(Q,X), which is the space of continuous X-
valued functions on Q, and if X = K, we write Cr(Q) and C(Q).

Let X ⊗ Y be the algebraic tensor product of Banach spaces X and Y and
let X ⊗λ Y be the injective tensor product, defined as the completion of X ⊗ Y
with respect to the norm

λ

(
n∑
i=1

xi ⊗ yi

)
= sup

u∈BX∗ , v∈BY ∗

∣∣∣ n∑
i=1

〈xi, u〉 〈yi, v〉
∣∣∣.

Background on tensor products can be found in [4] and [12]. For Banach spaces
X1, Y1 and operators T ∈ L (X,X1), U ∈ L (Y, Y1), the algebraic tensor product
T ⊗ U : X ⊗ Y → X1 ⊗ Y1 extends to a bounded linear operator T ⊗ U ∈
L (X ⊗λ Y,X1 ⊗λ Y1) with

‖T ⊗ U‖L (X⊗λY,X1⊗λY1) = ‖T‖L (X,X1)‖U‖L (Y,Y1).

We also recall that for each Banach space X the canonical isometric identification

C(Q,X) = X ⊗λ C(Q), (3)

holds. It follows that, in particular, for d > 1

C([0, 1]d) = C([0, 1])⊗λ · · · ⊗λ C([0, 1]).

Based on this, we define for r,m ∈ N

P r,d
m = P r,1

m ⊗ · · · ⊗ P r,1
m ∈ L (C([0, 1]d)),

where P r,1
m ∈ L (C([0, 1])) denotes composite with respect to the partition of

[0, 1] into m intervals of length m−1 Lagrange interpolation of degree r. Setting

Γdk =
{
i
k

: 0 ≤ i ≤ k
}d

for k ∈ N, it follows that P r,d
m interpolates on Γdrm. We

will use the well-known fact that there are constants c1, c2 > 0 such that for all
m ∈ N

‖P r,d
m ‖L (C(Q)) ≤ c1, sup

f∈BCr(Q)

‖f − P r,d
m f‖C(Q) ≤ c2m

−r. (4)
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Next we recall some notation from information-based complexity theory [15,
14], see also [7, 8] for the precise notions used here. Let F be a nonempty set, G a
normed linear space, S : F → G an arbitrary mapping, let K be a nonempty set,
and let Λ be a set of mappings from F to K. We interpret F as the set of inputs,
S as the solution operator, that is, the mapping that sends the input f ∈ F to
the exact solution Sf , and Λ is understood as the class of admissible information
functionals. Thus, the tuple P = (F,G, S,K,Λ) describes the abstract numerical
problem under consideration. In this paper we always have K = K.

A deterministic algorithm A for P is a mapping A : F → G, which is built
from values of information functionals on f ∈ F in an adaptive way (all details
can be found in [7, 8]). The result of the algorithm Af is the approximation to
Sf . The error of A is given by

e(S,A, F ) = sup
f∈F
‖Sf − Af‖G.

Let card(A, f) be the number of information functionals used by A at input f
and put

card(A,F ) = sup
f∈F

card(A, f).

Now the deterministic n-th minimal error is defined for n ∈ N0 by

edet
n (S, F ) = inf

card(A,F )≤n
e(S,A, F ).

A randomized algorithm for P is a family A = (Aω)ω∈Ω, where (Ω,Σ,P) is a
probability space and for each ω ∈ Ω, Aω is a deterministic algorithm. The
parameter ω represents the randomness in the algorithm A = (Aω)ω∈Ω. The
error of A is given by

e(S,A, F ) = sup
f∈F

E ‖Sf − Aωf‖G.

Setting
card(A,F ) = sup

f∈F
E card(Aω, f),

the randomized n-th minimal error is defined for n ∈ N0 by

eran
n (S, F ) = inf

card(A,F )≤n
e(S,A, F ).

So edet
n (S, F ), respectively eran

n (S, F ), is the minimal possible error among all
deterministic, respectively randomized algorithms that use at most n information
functionals. Since any deterministic algorithm can be viewed as a special case of
a randomized algorithm with a one-point probability space Ω = {ω0}, we always
have eran

n (S, F ) ≤ edet
n (S, F ).
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3 Banach space valued integration and a multi-

level method

Given r ∈ N0 and a Banach space X, we introduce the definite integration oper-
ator SX0 : C(Q,X)→ X by

SX0 f =

∫
Q

f(t)dt (f ∈ C(Q,X)) (5)

and the indefinite integration operator SX1 : C(Q,X)→ C(Q,X) by

(SX1 f)(t) =

∫
[0,t]

f(u)du (t ∈ Q, f ∈ C(Q,X)), (6)

where [0, t] =
∏d

i=1[0, ti], t = (ti)
d
i=1 ∈ Q. Let Sι (ι = 0, 1) be the scalar version

of SXι , that is, X = K. Then, in the sense of (3), we have SXι = IX ⊗ Sι.
First we recall algorithms for the scalar cases of the integration problems (5)

and (6). For r = 0 and n ∈ N the standard Monte Carlo method for definite
integration is given by

A0,0
n,ωf =

|Q|
n

n∑
i=1

f(ξi(ω)) (f ∈ C(Q)),

where ξi : Ω → Q (i = 1, . . . , n) are independent, uniformly distributed on Q
random variables on some complete probability space (Ω,Σ,P). If r ≥ 1, we put
k =

⌈
n1/d

⌉
and

A0,r
n,ωf = S0(P r,d

k f) + A0,0
n,ω(f − P r,d

k f),

which is the Monte Carlo method with separation of the main part. Finally we
set A0,r

n =
(
A0,r
n,ω

)
ω∈Ω

.
For indefinite integration we recall the algorithm from Section 4 of [9]. Let

n ∈ N, and put m =
⌈
(n+ 1)

1
2d−1

⌉
. For l̄ = (l1, . . . , ld) ∈ Nd

0 we define Ul̄ by

Ul̄ = (P 1,1

ml1
− P 1,1

ml1−1)⊗ · · · ⊗ (P 1,1

mld−1
− P 1,1

mld−1−1)⊗ P 1,1

mld
,

(P 1,1
m−1 := 0) and set

V =
∑

l̄∈Nd0, |l̄|=2d−1

Ul̄,

where |l̄| = l1 + · · ·+ ld. Moreover, we define

ml̄ = (ml1 , . . . ,mld), Γml̄ = Γ1
ml1 × · · · × Γ1

mld
,
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and for ī = (i1, . . . , id) ∈ Nd with 1 ≤ ik ≤ mlk (1 ≤ k ≤ d)

Ql̄,̄i =

[
i1 − 1

ml1
,
i1
ml1

]
× · · · ×

[
id − 1

mld
,
id
mld

]
.

Let ξl̄,̄i : Ω → Ql̄,̄i (|l̄| = 2d− 1, 1̄ ≤ ī ≤ ml̄) be independent uniformly dis-
tributed on Ql̄,̄i random variables on a complete probability space (Ω,Σ,P). De-
fine gl̄,ω ∈ `∞(Γml̄) by

gl̄,ω(t) =
∑

j̄:Ql̄,j̄⊆[0,t]

|Ql̄,j̄|f(ξl̄,j̄(ω)) (t ∈ Γml̄),

where the sum is set to zero if there is no j̄ with Ql̄,j̄ ⊆ [0, t]. Finally we put
A1,r
n =

(
A1,r
n,ω

)
ω∈Ω

with

A1,0
n,ωf :=

∑
l̄∈Nd0, |l̄|=2d−1

Ul̄gl̄,ω

and, for r ≥ 1, with k =
⌈
n1/d

⌉
,

A1,r
n,ωf = S1(P r,d

k f) + A1,0
n,ω(f − P r,d

k f).

Now we let r, r1 ∈ N0 and consider integration of functions from the set

BCr(Q,X) ∩BCr1 (Q,Y ),

where Y is a Banach space continuously embedded into X. We identify elements
of Y with their images in X. The following scheme was developed in [2], based on
the multilevel Monte Carlo approach from [5, 10]. Let (Tl)

∞
l=0 ⊂ L (X), l0, l1 ∈ N0,

l0 ≤ l1, nl0 , . . . , nl1 ∈ N, and define an algorithm A(ι) = (A
(ι)
ω )ω∈Ω for ι ∈ {0, 1}

as follows:

A(ι)
ω = Tl0 ⊗ Aι,rnl0 ,ω +

l1∑
l=l0+1

(Tl − Tl−1)⊗ Aι,r1nl,ω
(f ∈ C(Q,X)). (7)

To state the next result, we need some more notation. Let J : Y → X be the
embedding map, put G0(X) = X, G1(X) = C(Q,X), and

Xl = clX(Tl(X)) (l ∈ N0), Xl−1,l = clX((Tl − Tl−1)(X)) (l ∈ N), (8)

where clX denotes the closure in X. The following is a slight extension of Propo-
sition 3 of [2]. We omit the proof, since it is essentially the same as in [2], except
that in (10) for a part of the series the deterministic estimate is applied. This is
needed to obtain precise rates in Section 4.
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Proposition 3.1. Let 1 ≤ p ≤ 2, r, r1 ∈ N0, and ι ∈ {0, 1}. Then there are
constants c1, c2 > 0 such that for all Banach spaces X, Y , and operators (Tl)

∞
l=0

as above, for all l0, l1 ∈ N0 with l0 ≤ l1, and for all (nl)
l1
l=l0
⊂ N the so-defined

algorithm A
(ι)
ω satisfies

sup
f∈BCr(Q,X)∩BCr1 (Q,Y )

‖SXι f − A(ι)
ω f‖Gι(X)

≤ ‖J − Tl1J‖L (Y,X) + c1‖Tl0‖L (X) n
−r/d
l0

+c1

l1∑
l=l0+1

‖(Tl − Tl−1)J‖L (Y,X) n
−r1/d
l (ω ∈ Ω) (9)

and for all l∗ ∈ N0 with l0 ≤ l∗ ≤ l1

sup
f∈BCr(Q,X)∩BCr1 (Q,Y )

(
E ‖SXι f − A(ι)

ω f‖
p
Gι(X)

)1/p

≤ ‖J − Tl1J‖L (Y,X) + c2τp(Xl0)‖Tl0‖L (X)n
−r/d−1+1/p
l0

+c2

l∗∑
l=l0+1

τp(Xl−1,l)‖(Tl − Tl−1)J‖L (Y,X)n
−r1/d−1+1/p
l

+c2

l1∑
l=l∗+1

‖(Tl − Tl−1)J‖L (Y,X)n
−r1/d
l . (10)

4 Parametric integration

Let d0 ∈ N, Q0 = [0, 1]d0 . Now we study definite and indefinite integration of
functions depending on a parameter s ∈ Q0. Let r0, r ∈ N0 and let Cr0,r(Q0, Q)
be the space of continuous functions f : Q0 × Q → K having for α = (α0, α1),

α0 ∈ Nd0
0 , α1 ∈ Nd

0 with |α0| ≤ r0, |α1| ≤ r continuous partial derivatives ∂|α|f(s,t)
∂sα0∂tα1

,
endowed with the norm

‖f‖Cr0,r(Q0,Q) = max
|α0|≤r0,|α1|≤r

sup
s∈Q0,t∈Q

∣∣∣∣∂|α|f(s, t)

∂sα0∂tα1

∣∣∣∣ .
Let furthermore r1 ∈ N0 and put

F = BC0,r(Q0,Q) ∩BCr0,r1 (Q0,Q).

Note that for r < r1 we have

BC0,r(Q0,Q) ∩BCr0,r1 (Q0,Q) = BCr0,r1 (Q0,Q) = BC0,r1 (Q0,Q) ∩BCr0,r1 (Q0,Q),

hence we can assume without loss of generality that r ≥ r1.
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The definite parametric integration operator S0 : C(Q0 × Q) → C(Q0) is
given by

(S0f)(s) =

∫
Q

f(s, t)dt (s ∈ Q0),

and the indefinite parametric integration operator S1 : C(Q0×Q)→ C(Q0×Q)
by

(S1f)(s, t) =

∫
[0,t]

f(s, u)du (s ∈ Q0, t ∈ Q).

We consider standard information consisting of values of f , so the class of infor-
mation functionals is Λ = {δs,t : s ∈ Q0, t ∈ Q}, where δs,t(f) = f(s, t). In the
terminology of Section 2, the definite parametric integration problem is described
by the tuple

Π0 = (BC0,r(Q0,Q) ∩BCr0,r1 (Q0,Q), C(Q0),S0,K,Λ)

and the indefinite parametric integration problem by

Π1 = (BC0,r(Q0,Q) ∩BCr0,r1 (Q0,Q), C(Q0 ×Q),S1,K,Λ).

The following theorem gives the complexity of definite and indefinite paramet-
ric integration. The case of definite parametric integration with F = BCr(Q0×Q) is
already contained in [10], see also [2]. Definite parametric integration in Sobolev
classes was considered in [6, 16]. The case of indefinite parametric integration
with F = BCr(Q0×Q) was first studied in [2]. Below ∧ and ∨ mean logical con-
junction and disjunction, respectively.

Theorem 4.1. Let r0, r, r1 ∈ N0, r ≥ r1, d, d0 ∈ N, ι ∈ {0, 1} . Then the
deterministic minimal errors satisfy

edet
n (Sι, F ) � n−υ1 if r0

d0
> r1

d

n
− r0
d0 � edet

n (Sι, F ) � n
− r0
d0 (log n)

r0
d0

+1
if r0

d0
= r1

d
> 0

edet
n (Sι, F ) � n

− r0
d0 if r0

d0
= r1

d
= 0 ∨ r0

d0
< r1

d
,

(11)

where

υ1 =
r0
d0

r0
d0

+ r
d
− r1

d

r

d
. (12)

Moreover, the randomized minimal errors fulfill

eran
n (Sι, F ) � n−

r
d
− 1

2 if r0
d0
> r1

d
+ 1

2
∧ r = r1

eran
n (Sι, F ) � n−υ2(log n)

1
2 if r0

d0
> r1

d
+ 1

2
∧ r > r1

n
− r0
d0 (log n)

1
2 � eran

n (Sι, F ) � n
− r0
d0 (log n)

r0
d0

+ 3
2 if r0

d0
= r1

d
+ 1

2

eran
n (Sι, F ) � n

− r0
d0 (log n)

r0
d0
− r1
d if r1

d
< r0

d0
< r1

d
+ 1

2

n
− r0
d0 � eran

n (Sι, F ) � n
− r0
d0 (log log n)

r0
d0

+1
if r0

d0
= r1

d
> 0

eran
n (Sι, F ) � n

− r0
d0 if r0

d0
= r1

d
= 0 ∨ r0

d0
< r1

d
,

(13)
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with

υ2 =
r0
d0

r0
d0

+ r
d
− r1

d

(
r

d
+

1

2

)
. (14)

For the proof we need some preparations and auxiliary statements. To connect
parametric integration with Banach space valued integration considered in Section
3 we set X = C(Q0), Y = Cr0(Q0), thus C(Q0×Q) = C(Q,X) and Sι = S

C(Q0)
ι

(ι = 0, 1). Moreover,

BC0,r(Q0,Q) ∩BCr0,r1 (Q0,Q) = BCr(Q,C(Q0)) ∩BCr1 (Q,Cr0 (Q0))

= BCr(Q,X) ∩BCr1 (Q,Y ).

Let r2 = max(r0, 1) and define for l ∈ N0

Tl = P r2,d0

2l
∈ L (C(Q0)). (15)

This way the algorithm A
(ι)
ω defined in (7) becomes

A(ι)
ω = P r2,d0

2l0
⊗ Aι,rnl0 ,ω +

l1∑
l=l0+1

(
P r2,d0

2l
− P r2,d0

2l−1

)
⊗ Aι,r1nl,ω

.

For f ∈ C(Q0 ×Q) this means

A(ι)
ω f = P r2,d0

2l0

((
Aι,rnl0 ,ω

(fs)
)
s∈Γ

d0

r22l0

)

+

l1∑
l=l0+1

(
P r2,d0

2l
− P r2,d0

2l−1

)((
Aι,r1nl,ω

(fs)
)
s∈Γ

d0
r22l

)
,

where for s ∈ Q0 we used the notation fs = f(s, · ). Observe that

card(A(ι)
ω ) ≤ c

l1∑
l=l0

nl2
d0l (ω ∈ Ω). (16)

First we estimate the error of A
(ι)
ω . Recall the notation G0(C(Q0)) = C(Q0)

and G1(C(Q0)) = C(Q0 ×Q).

Proposition 4.2. Let r0, r, r1 ∈ N0, r ≥ r1, ι ∈ {0, 1}. Then there are constants
c1, c2 > 0 such that for all l0, l1 ∈ N0 with l0 ≤ l1 and for all (nl)

l1
l=l0
⊂ N we have

sup
f∈F
‖Sιf − A(ι)

ω f‖Gι(C(Q0))

≤ c12−r0l1 + c1n
−r/d
l0

+ c1

l1∑
l=l0+1

2−r0ln
−r1/d
l (ω ∈ Ω) (17)
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and for l0 ≤ l∗ ≤ l1

sup
f∈F

(
E ‖Sιf − A(ι)

ω f‖2
Gι(C(Q0))

)1/2

≤ c22−r0l1 + c2(l0 + 1)1/2n
−r/d−1/2
l0

+c2

l∗∑
l=l0+1

(l + 1)1/22−r0ln
−r1/d−1/2
l + c2

l1∑
l=l∗+1

2−r0ln
−r1/d
l . (18)

Proof. By (15) and (4),

‖Tl‖L (C(Q0)) ≤ c1, ‖J − TlJ‖L (Cr0 (Q0),C(Q0)) ≤ c22−r0l, (19)

where J : Cr0(Q0)→ C(Q0) is the embedding, and by (8) and (15),

Xl = P r2,d0

2l
(C(Q0)) = P r2,d0

2l
(`∞(Γd0

r22l
)).

Consequently, Xl−1 ⊆ Xl for l ≥ 1, thus, Xl−1,l ⊆ Xl and therefore

τ2(Xl−1,l) ≤ τ2(Xl). (20)

Moreover, it was observed in [2], proof of Proposition 4, that

τ2(Xl) ≤ cτ2

(
`∞
(
Γd0

r22l

))
≤ c(l + 1)1/2. (21)

Now relations (17) and (18) are a direct consequence of Proposition 3.1 together
with (19), (20), and (21).

The following lemma contains the key estimates for the upper bound proof.
It is formulated in a general way, which allows some shortcuts in the proof of
Theorem 4.1. Moreover, it enables us to use these estimates directly for the
analysis of parametric initial value problems in [3], where different but related
smoothness classes are considered.

Let β, β0, β1 ∈ R. Given l0, l
∗, l1 ∈ N0 with l0 ≤ l∗ ≤ l1 and (nl)

l1
l=l0
⊂ N, we

define

M
(
l0, l1, (nl)

l1
l=l0

)
= 2−β0d0l1 + n−βl0 +

l1∑
l=l0+1

2−β0d0ln−β1

l (22)

E
(
l0, l

∗, l1, (nl)
l1
l=l0

)
= 2−β0d0l1 + (l0 + 1)1/2n−βl0 +

l∗∑
l=l0+1

(l + 1)1/22−β0d0ln−β1

l

+

l1∑
l=l∗+1

2−β0d0ln
−β1+1/2
l . (23)
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Lemma 4.3. Let β, β0, β1 ∈ R with β0 ≥ 0 and β ≥ β1 ≥ 0. Then there are
constants c1−3 > 0 such that for each n ∈ N with n ≥ 2 there is a choice of
l0, l1 ∈ N0, l0 ≤ l1, and (nl)

l1
l=l0
⊂ N such that

l1∑
l=l0

nl2
d0l ≤ c1n (24)

and

M
(
l0, l1, (nl)

l1
l=l0

)
≤ c2


n−υ if β0 > β1

n−β0(log n)β0+1 if β0 = β1 > 0
n−β0 if β0 = β1 = 0 ∨ β0 < β1,

(25)

where

υ =
β0β

β0 + β − β1

. (26)

Moreover, if β1 ≥ 1/2, then for each n ∈ N with n > 2 there is a choice of
l0, l

∗, l1 ∈ N0, l0 ≤ l∗ ≤ l1, and (nl)
l1
l=l0
⊂ N satisfying (24) and

E
(
l0, l

∗, l1, (nl)
l1
l=l0

)

≤ c3


n−β if β0 > β1 = β
n−υ(log n)1/2 if β0 > β1 ∧ β > β1

n−β0(log n)β0+3/2 if β0 = β1

n−β0(log n)β0−β1+1/2 if β1 − 1/2 < β0 < β1

n−β0(log log n)β0+1 if β0 = β1 − 1/2.

(27)

Proof. In the case β0 = 0 the statements trivially follow from (22) and (23) with
l0 = l1 = 0 and n0 = 1. Therefore, in the sequel we can assume β0 > 0. Let
n ∈ N, n ≥ 2, and put

l1 =

⌈
log n

d0

⌉
, l0 =

⌊
β − β1

β0 + β − β1

l1

⌋
(28)

(recall that log always means log2). We note that (28) implies

l1 − l0 ≥
β0l1

β0 + β − β1

, (29)

hence

(β − β1)(l1 − l0) ≥ (β − β1)β0l1
β0 + β − β1

≥ β0l0,

and thus
β(l1 − l0) ≥ β0l0 + β1(l1 − l0). (30)

11



Let σ ∈ {0, 1}, δ0, δ1 ≥ 0 to be fixed later on and set

nl0 = 2d0(l1−l0), (31)

nl =
⌈
(l1 + 1)−σ2d0(l1−l)−δ0(l−l0)−δ1(l1−l)

⌉
(l = l0 + 1, . . . , l1). (32)

This gives

l1∑
l=l0

nl2
d0l ≤ c2d0l1 + (l1 + 1)−σ

l1∑
l=l0+1

2d0l1−δ0(l−l0)−δ1(l1−l) ≤ cn, (33)

provided δ0 > 0 or δ1 > 0 or σ = 1. By (30) and (31) we have

n−βl0 = 2−βd0(l1−l0) ≤ 2−β0d0l0−β1d0(l1−l0) ≤ 2−β0d0l0−β1d0(l1−l0)+β1δ1(l1−l0) (34)

and, using (32), for l0 < l ≤ l1

2−β0d0ln−β1

l ≤ (l1 + 1)σβ12−β0d0l−β1d0(l1−l)+β1δ0(l−l0)+β1δ1(l1−l). (35)

Furthermore,

−β0d0l − β1d0(l1 − l) + β1δ0(l − l0) + β1δ1(l1 − l)
= −β0d0l0 − (β0d0 − β1δ0) (l − l0)− β1(d0 − δ1)(l1 − l) (l0 ≤ l ≤ l1). (36)

By (22) and (34–36),

M
(
l0, l1, (nl)

l1
l=l0

)
≤ 2−β0d0l1 + (l1 + 1)σβ1

l1∑
l=l0

2−β0d0l0−(β0d0−β1δ0)(l−l0)−β1(d0−δ1)(l1−l). (37)

If β0 > β1, we set σ = δ1 = 0 and choose δ0 > 0 in such a way that β0d0 −
β1δ0 > β1d0. From (37) we obtain

M
(
l0, l1, (nl)

l1
l=l0

)
≤ 2−β0d0l1 +

l1∑
l=l0

2−β0d0l0−(β0d0−β1δ0)(l−l0)−β1d0(l1−l)

≤ 2−β0d0l1 + c2−β0d0l0−β1d0(l1−l0). (38)

Note that by (26), (28), and (29)

β0l0 + β1(l1 − l0) ≥ β0(β − β1)l1
β0 + β − β1

− β0 +
β1β0l1

β0 + β − β1

=
β0βl1

β0 + β − β1

− β0 = υl1 − β0 (39)

and, since β0 > β1,

υ =
β0β

β0 + β − β1

< β0. (40)
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It follows from (28) and (38–40) that

M
(
l0, l1, (nl)

l1
l=l0

)
≤ 2−β0d0l1 + c2−υd0l1 ≤ c2−υd0l1 ≤ cn−υ.

This together with (33) proves (25) for β0 > β1.
If β0 = β1 > 0, we set σ = 1, δ0 = δ1 = 0, and get from (28) and (37)

M
(
l0, l1, (nl)

l1
l=l0

)
≤ 2−β0d0l1 + (l1 + 1)β0

l1∑
l=l0

2−β0d0l0−β0d0(l−l0)−β0d0(l1−l)

≤ c(l1 + 1)β0+12−β0d0l1 ≤ cn−β0(log n)β0+1.

Combining this with (33) gives the respective estimate of (25).
Since we assumed β0 > 0, it remains to consider the case β0 < β1, where we

set σ = δ0 = 0 and choose δ1 > 0 in such a way that β1(d0 − δ1) > β0d0. By (28)
and (37),

M
(
l0, l1, (nl)

l1
l=l0

)
≤ 2−β0d0l1 +

l1∑
l=l0

2−β0d0l0−β0d0(l−l0)−β1(d0−δ1)(l1−l)

≤ 2−β0d0l1 + c2−β0d0l0−β0d0(l1−l0) ≤ cn−β0 .

This together with (33) completes the proof of (25).
Now we turn to the proof of (27) and assume that β1 ≥ 1/2. If β0 > β1 = β,

then we set l∗ = l1, σ = δ1 = 0 and choose δ0 > 0 satisfying β0d0 − β1δ0 > β1d0.
It follows from (28) that l0 = 0. Then (23), (34), and (35) give

E
(
l0, l1, l1, (nl)

l1
l=l0

)
≤ 2−β0d0l1 + 2−β1d0l1 +

l1∑
l=1

(l + 1)1/22−β0d0l−β1d0(l1−l)+β1δ0l

≤ 2−β0d0l1 +

l1∑
l=0

(l + 1)1/22−(β0d0−β1δ0)l−β1d0(l1−l)

≤ 2−β0d0l1 + c2−βd0l1 ≤ cn−β,

which together with (33) proves the first case of (27).
If (β0 > β1 ∧ β > β1) or β0 = β1, we choose l∗ = l1, get from (22–23)

E
(
l0, l1, l1, (nl)

l1
l=l0

)
≤ (l1 + 1)1/2M

(
l0, l1, (nl)

l1
l=l0

)
,

and the desired results follow from (28) and the respective cases of (25).
It remains to consider the case

β1 − 1/2 ≤ β0 < β1. (41)
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Here we make another choice of the parameters (nl)
l1
l=l0

(while l0 and l1 remain
the same, given by (28)). Let σ ∈ {0, 1}, δ1, δ2 ≥ 0, and l∗ ∈ N0 with l0 ≤ l∗ ≤ l1
to be fixed later on and set

nl0 = 2d0(l1−l0), (42)

nl =
⌈
2d0(l1−l)−δ1(l∗−l)⌉ (l = l0 + 1, . . . , l∗), (43)

nl =
⌈
(l1 − l∗ + 1)−σ2d0(l1−l)−δ2(l−l∗)⌉ (l = l∗ + 1, . . . , l1). (44)

In the sequel we need the following estimate, which results from (28) and (42–44).

l1∑
l=l0

nl2
d0l ≤ c2d0l1 +

l∗∑
l=l0+1

2d0l1−δ1(l∗−l) + (l1 − l∗ + 1)−σ
l1∑

l=l∗+1

2d0l1−δ2(l−l∗)

≤ cn (45)

whenever (δ1 > 0 ∧ δ2 > 0) or (σ = 1 ∧ δ1 > 0). Using (30) and (42), we obtain

n−βl0 = 2−βd0(l1−l0) ≤ 2−β0d0l0−β1d0(l1−l0) ≤ 2−β0d0l−β1d0(l1−l0)+β1δ1(l∗−l0). (46)

Denote β2 = β1 − 1/2. From (43–44) we get

2−β0d0ln−β1

l ≤ 2−β0d0l−β1d0(l1−l)+β1δ1(l∗−l) (l0 < l ≤ l∗) (47)

2−β0d0ln−β2

l ≤ (l1 − l∗ + 1)σβ22−β0d0l−β2d0(l1−l)+β2δ2(l−l∗) (l∗ < l ≤ l1). (48)

Moreover, we have for l0 ≤ l ≤ l∗

−β0d0l − β1d0(l1 − l) + β1δ1(l∗ − l)
= −β0d0l0 − β1d0(l1 − l∗)− β0d0(l − l0)− β1(d0 − δ1)(l∗ − l) (49)

and for l∗ + 1 ≤ l ≤ l1

−β0d0l − β2d0(l1 − l) + β2δ2(l − l∗)
= −β0d0l

∗ − β2d0(l1 − l)− (β0d0 − β2δ2)(l − l∗). (50)

Now (23) and (46–50) imply

E
(
l0, l

∗, l1, (nl)
l1
l=l0

)
≤ 2−β0d0l1 + E1 + E2, (51)

where

E1 =
l∗∑
l=l0

(l + 1)1/22−β0d0l0−β1d0(l1−l∗)−β0d0(l−l0)−β1(d0−δ1)(l∗−l) (52)

E2 = (l1 − l∗ + 1)σβ2

l1∑
l=l∗+1

2−β0d0l∗−β2d0(l1−l)−(β0d0−β2δ2)(l−l∗). (53)
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Put

l∗ = l1 −
⌈

log(l1 + 1)

d0

⌉
(54)

and observe that the assumption β0 > 0, (28), and (54) imply that there is a
constant c0 ∈ N such that for n ≥ c0

l0 < l∗ ≤ l1. (55)

Since for n < c0 the estimate (27) trivially follows from (51–53) by a suitable
choice of the constant, we can assume n ≥ c0, and thus (55). Using (41), we
choose δ1 > 0 in such a way that β0d0 < β1(d0−δ1). Then by (52), (54), and (28)

E1 ≤ c(l1 + 1)1/22−β0d0l0−β1d0(l1−l∗)−β0d0(l∗−l0)

= c(l1 + 1)1/22−β0d0l1+(β0d0−β1d0)(l1−l∗) ≤ c(l1 + 1)β0−β1+1/22−β0d0l1

≤ cn−β0(log n)β0−β1+1/2. (56)

Now we deal with E2 and distinguish between two subcases of (41). If β1−1/2 <
β0, we set σ = 0 and choose δ2 > 0 in such a way that β2d0 < β0d0 − β2δ2 (recall
that β2 = β1 − 1/2). Then, using (28), (53), and (54),

E2 ≤ c2−β0d0l∗−β2d0(l1−l∗) = c2−β0d0l1+(β0d0−β2d0)(l1−l∗)

≤ c2−β0d0l1(l1 + 1)β0−β1+1/2 ≤ cn−β0(log n)β0−β1+1/2. (57)

Combining (51) and (56–57), and taking into account (45), we obtain the fourth
case of (27). If β1− 1/2 = β0 (and thus, β2 = β0), we set σ = 1 and δ2 = 0. Here
we have

E2 ≤ c(l1 − l∗ + 1)β2+12−β0d0l1 ≤ cn−β0(log log n)β0+1. (58)

The last case of (27) is now a consequence of (51), (56), (58), and (45).

Proof of the upper bounds in Theorem 4.1.
We derive the upper bounds in (11) and (13) from (17), (18) of Proposition

4.2 and Lemma 4.3. To deal with (11) we set

β =
r

d
, β0 =

r0

d0

, β1 =
r1

d
, (59)

which together with (26) and (12) gives for r0/d0 > r1/d

υ =
β0β

β0 + β − β1

=
r0
d0
· r
d

r0
d0

+ r
d
− r1

d

= υ1. (60)

Furthermore, note that (17) and (22) imply

sup
f∈F
‖Sιf − A(ι)

ω f‖Gι(C(Q0)) ≤ cM
(
l0, l1, (nl)

l1
l=l0

)
. (61)
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Now the upper bounds in (11) follows from (16), (24–25), and (59–61). Finally
we consider (13) and put

β =
r

d
+

1

2
, β0 =

r0

d0

, β1 =
r1

d
+

1

2
, (62)

which gives for r0/d0 > r1/d+ 1/2

υ =
β0β

β0 + β − β1

=
r0
d0

(
r
d

+ 1
2

)
r0
d0

+ r
d
− r1

d

= υ2. (63)

We conclude from (18) and (23) that for any l∗ with l0 ≤ l∗ ≤ l1

sup
f∈F

(
E ‖Sιf − A(ι)

ω f‖2
Gι(C(Q0))

)1/2 ≤ cE
(
l0, l

∗, l1, (nl)
l1
l=l0

)
. (64)

With this, the upper estimates in (13) are a consequence of (16), (24), (27), and
(62–64), except for the last case of (13), which follows directly from the respective
case of the deterministic setting (11).

For the proof of the lower bounds we let ϕ0 6≡ 0 be a C∞ function on Rd0 with
support in Q0 and ϕ1 a C∞ function on Rd with support in Q and

∫
Q
ϕ1(t)dt 6= 0.

Let m0,m1 ∈ N, let Q0,i (i = 1, . . . ,md0
0 ) be the subdivision of Q0 into md0

0 cubes
of disjoint interior of sidelength m−1

0 and let Q1,j (j = 1, . . . ,md
1) be the respective

subdivision of Q. Let si, respectively tj, be the point in Q0,i, respectively Q1,j,
with minimal coordinates. Define for s ∈ Q0, t ∈ Q, i = 1, . . . ,md0

0 , j = 1, . . . ,md
1

ϕ0,i(s) = ϕ0(m0(s− si)), ϕ1,j(t) = ϕ1(m1(t− tj)),

and
ψij(s, t) = ϕ0,i(s)ϕ1,j(t).

Denote

Ψ0
m0,m1

=


m
d0
0∑

i=1

md1∑
j=1

δijψij : δij ∈ [−1, 1], i = 1, . . . ,md0
0 , j = 1, . . . ,md

1

 .

Lemma 4.4. Let ι ∈ {0, 1}. Then there are constants c1, c2 > 0 such that for all
m0,m1, n ∈ N with

md0
0 m

d
1 ≥ 4n (65)

we have

edet
n (Sι,Ψ

0
m0,m1

) ≥ c1 (66)

eran
n (Sι,Ψ

0
m0,m1

) ≥ c2m
−d/2
1 min

(
md

1, log(m0 + 1)
)1/2

. (67)
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Proof. Define S2 : C(Q0 ×Q)→ K to be the integration operator

S2f =

∫
Q0×Q

f(s, t)dsdt (f ∈ C(Q0 ×Q)).

Then
edet
n (Sι,Ψ

0
m0,m1

) ≥ edet
n (S2,Ψ

0
m0,m1

).

Moreover, standard results from [15], Ch. 4.5, give

edet
n (S2,Ψ

0
m0,m1

) ≥ c,

which implies (66). The bound (67) was shown for S0 in [10], see the proof of
Proposition 5.1 and, in particular, relations (48) and (58), combined with Lemma
5 there. Since S0 is a particular case of S1 (in other words, S0 reduces to S1,
see [8] for a formal definition), the lower bound also holds for S1.

We proceed by providing another technical estimate, which is again formu-
lated in somewhat general terms, also in view of further application in [3]. For
γ, γ0, γ1 ∈ R we define

Ψγ,γ0,γ1
m0,m1

= min
(
m−γ1 ,m−γ0

0 m−γ1

1

)
Ψ0
m0,m1

. (68)

Lemma 4.5. Let ι ∈ {0, 1} and γ, γ0, γ1 ∈ R with γ0 ≥ 0 and γ ≥ γ1 ≥ 0. Then
there are constants c1, c2 > 0 such that for each n ∈ N with n ≥ 2 there is a
choice of m0,m1 ∈ N0 fulfilling (65) and

edet
n (Sι,Ψ

γ,γ0,γ1
m0,m1

) ≥ c1

{
n−υ3 if γ0/d0 > γ1/d
n−γ0/d0 if γ0/d0 ≤ γ1/d,

where υ3 is defined by

υ3 =
γ0γ

γ0d+ (γ − γ1)d0

. (69)

Furthermore, for each n ∈ N with n > 2 there is a choice of m0,m1 ∈ N0 such
that (65) holds and

eran
n (Sι,Ψ

γ,γ0,γ1
m0,m1

)

≥ c2


n−γ/d−1/2 if γ0/d0 > γ1/d+ 1/2 ∧ γ = γ1

n−υ4(log n)1/2 if γ0/d0 > γ1/d+ 1/2 ∧ γ > γ1

n−γ0/d0(log n)γ0/d0−γ1/d if γ1/d < γ0/d0 ≤ γ1/d+ 1/2
n−γ0/d0 if γ0/d0 ≤ γ1/d.

with

υ4 =
γ0(γ + d/2)

γ0d+ (γ − γ1)d0

. (70)

17



Proof. Let n ∈ N, n ≥ 2. We start with the deterministic setting. First consider
the case γ0/d0 > γ1/d and put

m0 = 2
⌈
n

γ−γ1
γ0d+(γ−γ1)d0

⌉
, m1 = 2

⌈
n

γ0
γ0d+(γ−γ1)d0

⌉
. (71)

It follows that md0
0 m

d
1 ≥ 4n and

min
(
m−γ1 ,m−γ0

0 m−γ1

1

)
≥ cn

− γ0γ
γ0d+(γ−γ1)d0 = cn−υ3 . (72)

This together with (66) and (68) yields

edet
n (Sι,Ψ

γ,γ0,γ1
m0,m1

) ≥ cn−υ3 .

Next suppose γ0/d0 ≤ γ1/d. Here we put

m0 = 4
⌈
n1/d0

⌉
, m1 = 1. (73)

Clearly, md0
0 m

d
1 ≥ 4n and

min
(
m−γ1 ,m−γ0

0 m−γ1

1

)
≥ cn−γ0/d0 , (74)

therefore, by (66) and (68)

edet
n (Sι,Ψ

γ,γ0,γ1
m0,m1

) ≥ cn−γ0/d0 .

Now we turn to the randomized setting. First we consider the case γ0/d0 >
γ1/d+ 1/2. Define m0,m1 as in (71). Then we have

min(md
1, log(m0 + 1))1/2 ≥

{
c if γ = γ1

c(log n)1/2 if γ > γ1

m
−d/2
1 ≥ cn

− γ0d/2
γ0d+(γ−γ1)d0 ,

thus, using (67) and (72),

eran
n (Sι,Ψ

γ,γ0,γ1
m0,m1

)

≥

 cn
− γ0(γ+d/2)
γ0d+(γ−γ1)d0 = cn−

γ
d
− 1

2 if γ = γ1

cn
− γ0(γ+d/2)
γ0d+(γ−γ1)d0 (log n)1/2 = cn−υ4(log n)1/2 if γ > γ1.

Next we consider the case γ1/d < γ0/d0 ≤ γ1/d+ 1/2. Here we put

m0 = 2

⌈(
n

log n

)1/d0
⌉
, m1 = 2

⌈
(log n)1/d

⌉
,
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which again implies md0
0 m

d
1 ≥ 4n. Furthermore, we have

min(md
1, log(m0 + 1))1/2 ≥ c(log n)1/2,

m
−d/2
1 ≥ c(log n)−1/2

min
(
m−γ1 ,m−γ0

0 m−γ1

1

)
≥ cn−γ0/d0(log n)γ0/d0−γ1/d.

Combining this with (67) gives

eran
n (Sι,Ψ

γ,γ0,γ1
m0,m1

) ≥ n−γ0/d0(log n)γ0/d0−γ1/d.

Finally, let γ0/d0 ≤ γ1/d. Here we use the choice (73) and have

min(md
1, log(m0 + 1))1/2 ≥ c.

This together with (74) yields

eran
n (Sι,Ψ

γ,γ0,γ1
m0,m1

) ≥ n−γ0/d0 .

Proof of the lower bounds in Theorem 4.1.
Observe that there is a constant c > 0 such that for all m0,m1 ∈ N

cmin
(
m−r1 ,m−r00 m−r11

)
Ψ0
m0,m1

⊂ F.

Consequently, by (68),

eset
n (Sι, F ) ≥ c eset

n (Sι,Ψ
r,r0,r1
m0,m1

) (m0,m1 ∈ N),

where set ∈ {det, ran}. Setting γ = r, γ0 = r0, γ1 = r1, we have by (12) and (69),
for r0/d0 > r1/d

υ3 =
r0r

r0d+ (r − r1)d0

=
r0
d0

r0
d0

+ r
d
− r1

d

r

d
= υ1,

and, by (14) and (70), for r0/d0 > r1/d+ 1/2

υ4 =
r0(r + d/2)

r0d+ (r − r1)d0

=
r0
d0

r0
d0

+ r
d
− r1

d

(
r

d
+

1

2

)
= υ2.

Now Lemma 4.5 yields the lower bounds.
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5 Some particular classes and comments

If r1 = r, then F = BCr0,r(Q0,Q), which is a class of dominating mixed smoothness,
more precisely, the smoothness with respect to the parameter variables s and the
smoothness with respect to the variables t are combined in such a way.

Corollary 5.1. Let r0, r ∈ N0, r1 = r, d, d0 ∈ N, ι ∈ {0, 1}. Then

edet
n (Sι, F ) �log n

−min
“
r
d
,
r0
d0

”

eran
n (Sι, F ) �log n

−min
“
r
d

+ 1
2
,
r0
d0

”
.

Let us compare the order of the deterministic and randomized minimal errors
neglecting logarithmic factors. If the smoothness r0 with respect to the parameter
satisfies r0/d0 ≥ r/d + 1/2, then the order of eran

n (Sι, F ) is the same as that of
the randomized minimal errors for (nonparametric) integration of functions from
Cr(Q) and is by n−1/2 faster than parametric integration in the deterministic
setting. If r/d < r0/d0 < r/d+ 1/2, the randomized rate is still superior, but the
gap becomes smaller and reaches zero when r0/d0 ≤ r/d.

Next consider the case r1 = 0. This leads to the class

C(r0,0)∧(0,r)(Q0, Q) := Cr0,0(Q0, Q) ∩ C0,r(Q0, Q)

of continuous functions f : Q0 ×Q → K having for α0 ∈ Nd0
0 with |α0| ≤ r0 and

for α1 ∈ Nd
0 with |α1| ≤ r continuous partial derivatives ∂|α0|f(s,t)

∂sα0
and ∂|α1|f(s,t)

∂tα1
,

endowed with the norm

‖f‖C(r0,0)∧(0,r)(Q0,Q)

= max
(
‖f‖Cr0,0(Q0,Q), ‖f‖C0,r(Q0,Q)

)
= max

(
max
|α0|≤r0

sup
s∈Q0,t∈Q

∣∣∣∣∂|α|f(s, t)

∂sα0

∣∣∣∣ , max
|α1|≤r

sup
s∈Q0,t∈Q

∣∣∣∣∂|α|f(s, t)

∂tα1

∣∣∣∣) .
Thus, here we consider separate differentiability with respect to the s- and t-
variables. Before we state the result, we want to mention a closely related sub-
class. Let C [r0,r](Q0, Q) denote the class of continuous functions possessing contin-

uous partial derivatives ∂|α|f(s,t)
∂sα0∂tα1

for all α0 ∈ Nd0
0 , α1 ∈ Nd

0 satisfying |α0|
r0

+ |α1|
r
≤ 1

(with the convention 0
0

= 0 and c
0

= +∞ for c > 0), equipped with the norm

‖f‖C[r0,r](Q0,Q) = max
|α0|
r0

+
|α1|
r
≤1

sup
s∈Q0,t∈Q

∣∣∣∣∂|α|f(s, t)

∂sα0∂tα1

∣∣∣∣ .
For r0 = r this is just the class Cr(Q0, Q). Clearly, we have

C [r0,r](Q0, Q) ⊆ C(r0,0)∧(0,r)(Q0, Q) (75)
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and
‖f‖C[r0,r](Q0,Q) ≥ ‖f‖C(r0,0)∧(0,r)(Q0,Q).

In general, the inclusion in (75) is strict, see [13, 1].

Corollary 5.2. Let r0, r ∈ N0, d, d0 ∈ N, ι ∈ {0, 1} and let F1 be any set with

BC[r0,r](Q0,Q) ⊆ F1 ⊆ BC(r0,0)∧(0,r)(Q0,Q). (76)

Then

edet
n (Sι, F1) �log n−υ5

eran
n (Sι, F1) �log n−υ6 ,

with

υ5 =


r0
d0

r0
d0

+ r
d

r
d

if r0 > 0

0 if r0 = 0
(77)

υ6 =


r0
d0

r0
d0

+ r
d
,

(
r
d

+ 1
2

)
if r0

d0
> 1

2

r0
d0

if r0
d0
≤ 1

2
.

(78)

Proof. The upper bounds follow from (76) and Theorem 4.1. For the proof of
the lower bounds we observe that there is a constant c > 0 such that for all
m0,m1 ∈ N, ψ ∈ Ψ0

m0,m1

‖ψ‖C[r0,r](Q0×Q)

≤ cmax

{
m
|α0|
0 m

|α1|
1 : α0 ∈ Nd0

0 , α1 ∈ Nd
0,
|α0|
r0

+
|α1|
r
≤ 1

}
= cmax

{(
mr0

0

) |α0|
r0

(
mr

1

) |α1|
r : α0 ∈ Nd0

0 , α1 ∈ Nd
0,
|α0|
r0

+
|α1|
r
≤ 1

}
≤ cmax (mr0

0 ,m
r
1)

and therefore
cmin(m−r1 ,m−r00 ) Ψ0

m0,m1
⊆ BC[r0,r](Q0,Q).

Arguing as in the proof of the lower bounds of Theorem 4.1 gives the desired
result.

Note that for r0 = r we recover the results of [2], with the rates

υ5 =
r

d+ d0

, υ6 =

{
r+ d

2

d+d0
if r

d0
> 1

2

r
d0

if r
d0
≤ 1

2
.
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Now we compare the exponents υ5 of the deterministic setting (77) and υ6 of the
randomized setting (78). We assume r0 > 0, otherwise both exponents are zero.

First consider the case r0/d0 > 1/2. If r = 0, then υ5 = 0, υ6 = 1/2, so
the randomized rate is by the exponent 1/2 superior to the (trivial) deterministic
one. For r > 0 the gap is smaller than 1/2, but it is never zero. The advantage
of randomization can be arbitrarily close to 1/2 (for large parameter smoothness
r0/d0 or small t-smoothness r/d).

If r0/d0 ≤ 1/2, we have

υ5 =
r
d

r0
d0

+ r
d

r0

d0

, υ6 =
r0

d0

,

so also in this case the gain by randomization is never zero, furthermore, for small
r/d it comes close to r0/d0, and it reaches this value only for r = 0.
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