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Abstract

We consider initial value problems for parameter dependent ordinary
differential equations with values in a Banach space and study their com-
plexity both in the deterministic and randomized setting, for input data
from various smoothness classes. We develop multilevel algorithms, inves-
tigate the convergence of their deterministic and stochastic versions, and
prove lower bounds.

1 Introduction and preliminaries

The complexity of initial value problems for ordinary differential equations (ODEs)
was studied in [19, 20, 21, 16, 4] for scalar systems and in [15] for the Banach
space valued case. In this paper we consider initial value problems for parameter
dependent ODEs with values in a Banach space. We study the complexity in
the deterministic and randomized setting for various classes of smoothness of the
input functions. These classes are closely related to those considered in [6] and
include cases of isotropic and of dominating mixed smoothness.

We develop a randomized multilevel algorithm and establish its convergence
rate. The deterministic version of it, which is obtained from the randomized
one by fixing the random parameters in an arbitrary way, is also studied. The
algorithmic approach is a nonlinear analogue of the approximation in [5], based
on the multilevel methods of [11, 17]. Furthermore, our analysis uses the Banach
space valued generalizations [15] of the scalar results in [16, 4].

We prove lower bounds on the complexity. The algorithm turns out to be
of optimal order (up to logarithmic factors) in the deterministic setting. In the
randomized setting, for general Banach spaces, there remains an arbitrarily small
gap in the exponent. For special spaces like the L, spaces the convergence rate of
the algorithm and the lower bounds are matching also in the randomized setting



(again up to some logarithmic factors). This way we obtain almost sharp esti-
mates of the complexity. We also compare the optimal rates of the deterministic
and randomized setting, this way assessing the speedup randomization can bring
over deterministic methods.

Studying equations in Banach spaces means including finite and infinite sys-
tems of scalar ODEs and gives the possibility of considering various norms which
are non-equivalent for the case of infinite systems. The Banach space approach is
also of interest from the point of view of tractability of high-dimensional problems
[28], since the Banach space results imply convergence estimates for finite scalar
systems with constants independent of the dimension, see also the comments in
Section 6.

Regularity and approximation properties of the solution of parameter depend-
ent initial value problems for ODEs have recently been considered in [10], however,
with linear dependence on the parameters and an infinite dimensional parameter
space. Complexity of parameter dependent problems was previously studied only
for parametric definite integration [17, 12, 31, 5| and for parametric indefinite
integration [5]. Both problems are linear, so that in the present paper for the
first time the complexity of a nonlinear parametric problem is analyzed.

The paper is organized as follows. In Section 2 we consider Banach space
valued ODEs and develop a multilevel approach. The parametric problem is
formulated in Section 3 and we show how it fits the Banach space scheme for
a single equation of Section 2. In Section 4 the algorithm for the parametric
problem is described and convergence rates are derived. Section 5 contains lower
bounds and the complexity is established. Finally, in Section 6 we discuss the
considered classes and related ones, study special cases of the obtained results,
and provide comparisons between deterministic and randomized setting.

Background on Banach space valued differential calculus and ODEs can be
found in [1]. For further reading on ODEs in Banach spaces we refer to the
monographs [3, 25, 32, 22, 8]. Basic references on information-based complexity
theory are [29, 27] and, in particular for the topic of tractability, [28].

Let N={1,2,...} and Ny = {0, 1,2,...}. We introduce some notation and
concepts from Banach space theory needed in the sequel. For a Banach space
X the closed unit ball is denoted by By, the open unit ball by BY%, the identity
mapping on X by Ix, and the dual space by X*. Given k € N, Banach spaces X;
(t=1,...,k)and Y, welet £ (X, ..., X, Y) be the space of bounded multilinear
mappings 7" : X; X --- X X — Y endowed with the canonical norm

||TH$(X11---XIC7Y) = sup ||T<I1, SR 7$k>H
I1€BX1,...,:Dk€BXk
If X3 ==X, = X, we write Z,(X,Y). Similarly, if £ = ky + ko with
ki,ke >0, Xy ==Xy, =X, Xgy11 =+ = Xg,+k, = Z, we use the notation

Lk (X, Z,Y). For convenience we extend the notation to k = 0 by setting
LH(X)Y) = Lo X, 2,Y) =Y. Itk =1, A(X,Y) is the space of bounded



linear operators, for which we write Z(X,Y). If Y = X, we write £ (X) instead
of Z(X, X).

If M is a nonempty set, we let B(M, X) be the space of all X-valued, bounded
on M functions, equipped with the supremum norm

lgllBx) = sup [lg(1)]]
teM

If X =R, we write B(M).
Given 1 < p < 2, a Banach space X is said to be of (Rademacher) type p, if
there is a constant ¢ > 0 such that for all n € N and x4,...,2, € X

n
i=1

where (g;)", is a sequence of independent Bernoulli random variables with P{e; =
—1} = P{e; = +1} = 1/2 (we refer to [26, 23] for this notion and related
facts). The type p constant 7,(X) of X is the smallest constant ¢ > 0 satisfying
(1). If there is no such ¢ > 0, we set 7,(X) = oo. The space L, (M, ) with
(M, i) an arbitrary measure space and p; < oo is of type p with p = min(py, 2).
Furthermore, there is a constant ¢ > 0 such that 7(¢%) < ¢(log(n + 1))*/2 for all
n € N (see also Lemma 4.6 below).

Throughout the paper the same symbol ¢, ¢1, co, ... may denote different con-
stants, even in a sequence of relations. The function log always means log,. For
nonnegative reals (a,)neny and (b,)neny wWe write a, = b, if there are constants
¢ > 0 and ng € N such that for all n > ng, a, < ¢b,. Furthermore, a, < b,
means that a, = b, and b, < a,. Finally, a,, <o b, iff there are constants ¢ > 0,
no € N, and 6 € R such that for all n > ng, a, < cb,(log(n + 1))’ and a,, <ioq by,
iff a, =0 bn, and by, =iog ap.

p n
<&yl (1)
k=1

2 Banach space valued ODEs

Let X and Y be Banach spaces over the reals. This assumption is made because
below we consider only real differentiation. Complex spaces can be included by
simply considering them as spaces over the reals. Let —co < a < b < 400,
r €Ny, 0<p<1,andlet k, L : (0,+00) — (0,400) be any functions. We define
the following class

C"°(la,b] x X,Y;k) of continuous functions f:[a,b] x X =Y

having for o = (ay, az) € N2 with |a| = a3 +a < r continuous partial (Fréchet-)
derivatives
dlf(t, )

X,Y
ot dxe € ZalXY),



such that for all R > 0, t,t1,ts € [a,b], x,y € RBx, |a| <7

ol f(t,x)
Ot 0z

and, for |a| =1,

Hala flt,z) 99 f(ta,y)

Ot1 92 Ot Qo2

< w(R)([tr — ol + [z —yl1?).  (3)

Lﬂa? (X,Y)

Moreover, let Crif([a,b] x X,Y;x, L) be the class of all f € C"¢([a,b] x X,Y; k)
such that for R > 0, t € [a,b], z,y € RBx

1t 2) = f& )l < LR) [z =yl (4)

So the classes introduced above have smoothness (and the Lipschitz property)
bounded on bounded sets. If X is finite dimensional, this means local smoothness
and local Lipschitz property.

We consider initial value problems for ODEs with values in X

u'(t) = f(tu(t) (te€lad]),  ula)=u, ()
with f € Ciii([a,b] x X, X;k, L) and up € X. A function u : [a,b] — X is called
a solution, if u is continuously differentiable and (5) is satisfied.

Next we introduce the algorithm developed and studied in [15] (and previously,
for the scalar case, in [4]). Let m € Ng, n € N, let t;, = a+kh (k=0,1,...,n) be
the uniform grid on [a, b] of meshsize h = (b—a)/n. Furthermore, for 0 < k£ < n—1
and 1 < j < m let Py ; be the operator of Lagrange interpolation of degree j on
the equidistant grid ¢;,;;, = tx +ih/j (i =0,...,7) on [ty,txs1]. Let &, ..., &, be
independent random variables on some probability space (€2, %, P) such that &
is uniformly distributed on [tx_1,tx] (K = 1,...,n). Since we will also consider
&k(w) for fixed w € Q, we assume (without loss of generality) that

{(&1(w),...,&(w)) : w e Q} =T[to, t1] X+ X [tn1, tn]. (6)
Fix f € C{¥([a,b] x X, X;k,L) and uy € X, and define (ux)}_; C X and

Lip
X-valued polynomials py ;(t) for k =0,...,n —1, j = 0,...,m by induction as
follows. Assume that 0 < k < n — 1 and that uy; is already defined. Then we
define py o by

Pro(t) = k& [t w)(t =) (¢ € [te, trsa]). (7)

Now suppose m > 1, 0 < j < m, and py; is already defined. We define py ;11 by

t
Prjri(t) = Uk+/ (Prj+1Grj) (T)dT, (8)
12
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where

G = (F(trjeriPrj(tejens)) s - 9)

Finally, we put

Uk+1 = pk,m(tk-i-l) +h (f(€k+1apk,m(€k+l)) - p;:,m(gk-i‘l)) : (10)

The result of the algorithm, the approximation v € B([a, b], X) to the solution u
of (5), is now defined by

(1) = Pem(t) it €[ty tpr1) and 0<k<n-—1,
R S it =ty

(11)

Let
Ay, Cri(la,b] x X, X5k, L) x X — B([a,b], X)

Lip

denote the resulting mapping, for w € € fixed, that is,

A?,w(f7 UO) =, (12)

and let A} denote the family of mappings A" = (A}, )wea. We write A7'(f, uo)
for the random variable (A}, (f, uo))weq. Observe that for m = 0 we have

pro(t) = wp+ f(th,w)(t—t)  (EE€[thte], 0<k<n—1), (13)
Upyr = Up + Rf(Epy1, Pro(Errr)) (0<k<n-1). (14)

Concerning the definition of A}’ , we note that due to condition (6), fixing any

w € ) is the same as fixing any values of & € [ty_1,%] (kK =1,...,n). This way
we obtain a deterministic algorithm, the & being fixed algorithm parameters.
Given also o, A > 0, we let F"2([a,b] x X, X; k, L, 0, \) be the class of all pairs

(f;uo) with f € Crif([a,b] x X, X;k, L), ug € 0By, such that the initial value

problem (5) has a solution u (which is unique, due to assumption (4)) satisfying
1l B(tap.x) < A- (15)
If r = 0 = 0, we require, in addition, that (f, o) is such that for alln € N, w € Q
147 (fs w0) [ Beta1,x) < A (16)
The solution operator
S F([a,b] x X, X;k,L,0,\) — B([a,b], X)

is defined for (f,ug) € F"(la,b] x X, X;k,L,0,\) by S(f,ug) = u, where u is
the solution of the initial value problem (5).



Proposition 2.1. Let r € Ny, 0 < 0o <1, k,L : (0,400) — (0,40), o,A > 0,
1<p<2 andletm €Ny ifr+0>0andm=0ifr=0=0. Then there are
constants ¢, co > 0 and vy € N such that for all Banach spaces X and all n > vy

sup IS(f, u0) — Ap, (f, wo) || Bela, x)
(fyuo)eFre(la,blx X, X;k,L,0,\)
< gyp minlrremtl) (we ) (17)
and
m p l/p
sup (E IS(fsuo) — An,w(f? uO)HB([a,b],X))
(fuo)eFme(lab|x X, X;k,L,0,N\)
< CQTP<X)H7 min(r+g,m+1)71+1/p. (18)

Proof. We put
U=[a,b) x A\+1)BY, Us=0Bx, V =]a,b]x \Bx.

Let (f,uo) € F™9([a,b] x X, X; K, L,0,)\). First we consider the case r + o > 0.
By (15) we have, in the notation of [15],

(Flos o) € Fr2(U, 5+ 1), L+ 1), U, V).
Since ABx + 3Bx C (A + 1)B%, Theorem 3.3 of [15] gives (17-18). Now let
r =0 =0 and put u = S(f,up). Then for ¢t € [ty, tg11]
u(ty) + k(A 4+ 1)(t — tx)Bx € ABx + k(A + 1)b_TaBX C(A+1)BY%

whenever n > vy := |k(A+ 1)(b—a)] + 1. Taking into account (15-16), we see
that, in the notation of [15],

(flu,uo) € (U, k(A4 1), LA+ 1), Uy, V,0,n)  (n > 1p).
Therefore (17-18) follow for n > v from Proposition 3.4 of [15]. O

In the sequel we need the following result.

Lemma 2.2. Let Z and Z; be Banach spaces, [ € Cg’ig([a,b] X Z, 7k, L), and

T e L(Z,7Zy). Assume that there are k1, Ly : (0,+00) — (0,4+00) and a function
g€ C(la,b] x Zy, Zy; k1, L) such that for allt € [a,b], z € Z

Lip
Tf(t,z)=g(t,Tz). (19)
Then for all ug € Z the following hold. For m € Ng, n € N, w € Q
TAnm,w(fv up) = A?,w(ga Tuyg). (20)
Moreover, if u is a solution of (5), then Tu is a solution of the ODE in Z;
w'(t) = g(t,w(t)) (¢t € [a,b]), w(a) = Tuy. (21)



Proof. Applying T to (5), we get
(Tu(t)) = Tu'(t) =Tf(t ut)) =g(t,Tu(t)) (t€ [ab])
Tu(a) = Tuy.

Now the second statement follows from uniqueness of the solution of (21).

Let uy, prj, and qx; be the resulting sequences (7-10), when applying A}’
to (f, up). Furthermore, put @y = T'ug and let dy, py j, and Gy ; be the respective
functions from applying A" to (g, 7). We show that for 0 < k <n

and for 0 <k <n-—1
Tpr; = brg (0<j<m). (23)

First we prove that given k& with 0 < k < n — 1, (22) implies (23). So assume
that (22) holds. We show (23) by induction over j. Let j = 0. By (19) and (22),

Tf(t, ux) = g(tr, Tug) = g(tr, W),

therefore
Tpeo(t) =Tu, + T f(t, up)(t —tr) = U + g(tr, k) (t — te) = Pro(t).
Now we assume that (23) holds for some j with 0 < j < m. Then
Tpr,j(th 1) = Prj(tejrri) (E=0,....5+1).
It follows that
T f(tejssis P (thgra)) = (kg Dy (th 1))

and consequently

t
Tpgjn(t) = Tuk+T/ (Prj41qr j+1)(T)dT
12

t
= ftk—i-/ (Prj+1Gk,j+1)(T)dT = Dp j41(1).

173

This completes the induction over j and the proof that (22) implies (23).
Next we show (22) by induction over k. For k = 0 it holds by definition. Now
suppose (22) and thus (23) hold for some k with 0 < k < n — 1. It follows that

Tup, = Tpk’,m(tk’—l—l) + h<Tf<€k+17pk‘7m(§k+l)) - Tp;g,m(fkﬂ))
= P (ter1) + 2 (9(Er1s Pran (Eps1)) = Phon (1)) = Tpsr-

This shows (22) for k£ + 1, completes the induction over k, and proves (22-23).
Now (20) follows from (22-23) and (11-12).
O]



Now we develop a multilevel procedure. Assume that a Banach space Y is
continuously embedded into the Banach space X, and let J be the embedding
map. We shall identify elements of Y with their images in X. Let r,r; € Ny,
0<0,00 <1,k L:(0,+00) — (0,400), o, A > 0, and consider the set

K=F"(a,b] x X, X5k, Lo, \) N F 0 ([a,b] X Y)Yk, L o, N), (24)

which is the set of all (f,ug) € F"¢([a,b] x X, X;k, L,0,\) such that f maps
l[a,b] x Y to Y and, if f is considered as such a mapping, (f,uo) belongs to
Froei([a,b] x Y, Yk, L o, \).

Observe that the solution operator S is correctly defined also on K, since
the respective operators on F"¢([a,b] x X, X;k, L,0,\) and F ([a,b] X Y,Y;
K, L, o, \) coincide on the intersection. This follows from Lemma 2.2 with Z =Y,
Ziv=X,T=J,and g=f.

Let (P)%, C Z(X) and fix any lo,l; € No, lp < &y, and (n;)j,, C N. For
(f,up) € K and w € Q we define an approximation A, (f,ugp) to u = S(f,up) in
the space B([a,b], X) as follows

51

Aw(f, uO) = ]DIOA:”O,w<f7 UO) + Z (]Dl - Plfl)Azll,w(uﬁ Uo). (25)

I=lp+1

(Here we assume that the underlying probability space (€2, %, P) is such that all
random variables required on the levels Iy, ..., [; are defined on it.)
We assume that there is a constant 79 > 0 such that for all [ € Ny

1Pllexy < - (26)

Furthermore, we assume the existence of a family of operators (7;);°2, C Z(X)
with the following properties. There are constants 7;, v, > 0 such that for [ € Ny

T3] .2x) < 71, (27)
Ty maps Y to Y,
1Til|2vy < 72, (28)
and
PTi =P (k<) (29)

Finally, let Ky C K be a subset with the following property: If f is such that
there exists a ug with (f,ug) € Ko, then

Tif(t,x) =T,f(t,Tix) (t€ [a,b],z € X,leNy). (30)

We put
Xi = cdx(T(X)), Yi=cy(Ti(Y)) (I €No),

where cl denotes the closure in the respective space.

8



Note that the T; do not enter the algorithm definition, they are needed for the
error analysis. Furthermore, (27-30) hold, in particular, for g = IC and T} = Ix.
In this case the error estimate (32) in the randomized setting of Proposition
2.3 below requires some type assumption on the spaces X and Y. However, in
Sections 3 and 4 we shall consider spaces X and Y which have no nontrivial type,
while certain finite dimensional subspaces related to the approximation do have
type constants with nontrivial estimates. Therefore we will also consider other
choices of Iy and T}, see Section 4.

Proposition 2.3. Let r,rp € Ny, 0 < 0,00 < 1, &, L : (0,+00) — (0,+00),
o, N Y -2 >0, and 1 < p < 2. Then there are constants cy,co > 0 and vy € N
such that the following holds.

Given Banach spaces X, Y with Y continuously embedded into X, sequences
(P20, (T1)2y C ZL(X) satisfying (26-29), let K be defined by (24), and let Ko C
IC be such that (30) is fulfilled. Then for allly,ly € No withly <1y and (nl)ﬁlzlo CN
with ny > vy (lp <1 <1y) the so-defined algorithm (A,) satisfies

sup HS(f, Uo) - Aw(f> UO)HB([a,b],X)
(fyu0)€K0
< allJ =P Jlleyx) +an, ¢
51
ta Y NP = Po)leyom ™ (weQ) (31)

I=lp+1

and, for any I* € Ny with lop < 1* <[4

1/p
sup (E[IS(/, u0) = AulFs10) s
(fvuo)EICO

< a|lJ =P, J|eyx) + CQTp(XlO)n;OngflJrl/p

l*
+CQ Z TP(K)H(PZ - _Pl_l)J||2(Y7X)nl_7”1_gl—1+l/p
I=lo+1

I

+es Y 1B = Pa) || om0 (32)
I=1*+1

Remark 2.4. Note that the natural case of estimate (32) would be [* = [;, and
it is this case which we use in this paper. However, as in [6], the more general
approach will be used in [7] to determine sharp rates, including precise powers of
logarithms.

Proof. Let (f,ug) € Ko. Then by (24) and (15)

IS(f, wo) |l B(apy) < A



It follows that

IS(f,u0) — P, S(f,uo)llBlan,x) < Al — PuJ|lzrvx)- (33)

We have by (27) and (28)

,Iylof S C£;f)([a7 b] X X107Xl0;71ﬁ7 /YIL) (34)
Tif e Cip™(la, 0] X Y, Yi;72k,72L)  (lo <1< 1), (35)

and therefore, using (30) and Lemma 2.2 with g = T} f,

TiS(f,uo) = S(Tif, Tiug) (o <1< 1) (36)
Ty Ay, o(fruwo) = AL oL f, Tiyue)  (w € Q) (37)
]}Azll,w(fu U(]) = Azll,w(ﬂf7ﬂu0> (w S Q? lo << ll) (38)

This together with (27-28) and (34-35) implies
(EOf? 7—wlou()) € fﬁg([a’ b] X XloaXl0;715771L7710'7 71>\) (39)
(Tif, Trug) € F™([a,b] x Y1, Y72k, 2L, v20,72A)  (lo <1< 1y). (40)
By (25),

IS(f,u0) — Au(f; w0l B(apl,x)
< ||S(f’ U()) - Pl18(f7 U()) HB([a,b],X)

+ [P S(f,u0) = PioAr, o(fs o)l (ax)

I
+ Y (P = Poa)(S(fu0) = Apl L (f 0)) | 3((a.x)- (41)

I=lp+1

Furthermore, by (36), (37), and (26),

HPIOS(f7 UO) - PloAZlo,w<f7 Uo)“B([a,b},X)
= ||PloTl08(f’ UU) - PloTloA:zlo,w(fa UO)HB([a,bLX)
- H‘PIOS(EOfJ TZOUO) - -PIOAT (ﬂof? ﬂ0u0>||B([a,b],X)

Ny W

< 70”'5<T‘lof7 ﬂouo) - A;lo,w<Tlofa Tlouo) HB([a,b},X;O) (42)
and similarly, by (36) and (38)

(P = Pi-)(S(f wo) — Ay, o (fs o)) 1B (e, x)
(P — P-1)Ty(S(f, wo) — A7) (f w0)) | B(lap),x)
= (P — P)(S(Tif, Tiuo) — A7 (T f, Tiuo)) | B(jap,x)
< (P = Po)J 2SI f, Truo) — Ay (T f, Truo)| B(lap)yy - (43)

10



By (39), (40), and Proposition 2.1, for all w € Q and (nl)?:lo C N with n; > v
(lo <1<1y)

HS(Eofa EOUO) — A, (T’lofv T’ZOUO)HB([%I’]:XlO) é Cnl_or_g (44)

Ny ,w

IS(T3f, Tiwo) — Ay o (T1f Two)l Banvy < ey % (45)

and

1/p
(]E HS(EOf? ,—TZOU/O) - A:Llo,w(ﬂofv ﬂou0>‘|%([a,b],Xlo))

< ey (X )y O (46)
1/p
(EIS(Tf, Tiwo) — A7t L (TiS Titto) oy )
< en(Yn O (47)

Combining (33) and (41-45) yields (31). Relation (32) follows in a similar way
from (33), (41-43), and (45-47).
[l

3 The parametric problem as a Banach space
valued ODE

Let dy € N, Q = [0,1]%. To keep notation consistent, instead of considering
derivatives with respect to single components of s € R%, we consider derivatives
with respect to the vector s, in the sense of calculus on vector spaces as in the
previous section. So below % is the Jacobian, % the Hessian, etc. The space R%
is equipped with the Euclidean norm. For r € Ny and Z a Banach space we let
C"(Q, Z) be the space of Z-valued r-times continuously differentiable functions

on (), endowed with the norm

&' f(s)
ds’

1 fller@.2) = gnax 235

‘gj(Rdo Z)

Note that for » > 1 this is not the standard norm on C"(Q, Z) (given by the
maximum of the supremum-norms of the partial derivatives with respect to the
components of s), but it is equivalent, with a constant depending only on dy and
r. We use the notation C7(Q) if Z = R. Furthermore, C°(Q, Z) is understood to
be the space of continuous functions on @, for which we write C(Q, Z) and C(Q)
if Z=R.

Given functions &, L : (0, +00) — (0,400), 9,7 € Ny, 0 < p < 1, and Banach
spaces Z, Z1, we define the following class

E(Q X [a,b] X Z,Z1; k)  of continuous functions f : @Q X [a,b] X Z — Z;

11



having for a = (ag, a1, as) € N3 with ag < 1o, a; <7, and ag+ag +ag <rg+7
continuous partial derivatives

ol f(s,t, 2)
0800t 0z

satisfying for R > 0, s € Q, t € [a,b], z € RBy

8“"]”(3, t,z)
08200t )z 2

€ Ly R™. Z.71)

< K(R) (48)

ZD‘O,QQ (Rd0727Z1)

and for s € Q, t1,t € [a,b], 21,20 € RBy

8‘“']‘(3,751,21) B 0|a|f(s,t2,22)
050t 9z o2 Os20 0tz

Loy, ap (RY0,Z,71)
S K(R)|t1 — tzlg + H(R)H,Zl — Z2HQ. (49)

Moreover, we let 61;""%(Q x [a,b] X Z, Z1; k, L) be the class of all f € €70"¢(Q x
la,b] X Z, Zy; k) satisfying for o = (ap, 0, ag) with apg + as < rg, R >0, s € Q,

t e [a,b], 21, %9 € RBj

a|0“f(57 t7 Zl) . 8‘a|f(57 t? 22)
080 z2 08*0 0z

< L(R)[|z1 — 2]|. (50)

‘Zao,ag (Rdo :szl)

Clearly, if (), " € Ny are such that rj <o, v’ <r, then

E(Q x [0, X 7, Ziyw) C COTUQ X [a,b] x 2, Ziik)  (51)
GrO(Q x a0 x 2, 2w, L) © GTUQ x [a,b] x Z, Ziik L), (52)

= Lip
Furthermore, if ¢’ < o, then

Gl ¢(Q < [a,b] X Z, Zy;k, L) C G107 (Q % [a,b] X Z, 7152k, L), (53)

where the factor 2 comes from the case max(|t; — ta|, [|z1 — 22]|) > 1, in which

(48) with constant « trivially implies (49) with constant 2. Integration yields
ro,7+1,0 X T0,7,1 .

G TN Q X [a,b] X Z, Zysk, L) C 60 (Q x [a,b] X Z, Zy;k, L) (54)
Finally note that it would suffice to require (49) and (50) for certain subsets of
the sets of multiindices a to obtain (up to constants) the same classes — we omit
the details, because the definition given above is more convenient for us.

The classes above were introduced for two Banach spaces Z, Z;. Some of the
lemmas below will be formulated in this general form, for technical convenience.

However, for the formulation of the problem and later for the main results we
have Z;, = Z.
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Now we consider the numerical solution of initial value problems for Z-valued
ODEs depending on a parameter s € )

%u(g,t) = f(s,t,u(s,t)) (s€Q,t€a,b]) (55)

u(s,a) = wuo(s) (s€Q) (56)

with f € €"(Q x [a,b] X Z,Z;k,L) and ug € C™(Q,Z). A function u :
Q x |a,b] — Z is called a solution if for each s € @, u(s,t) is continuously
differentiable as a function of ¢ and (55-56) are satisfied.

The class €75,%(Q X [a,b] X Z, Z; k, L) introduced above is a certain class of
functions with dominating mixed smoothness. We will consider the intersection
of two such classes. This enables us to exploit the full generality of (24) and,
in particular, to include also functions with isotropic smoothness. We refer to
Section 6 for further motivation, discussion, and special cases of this choice. To
define the parametric problem, let ;1 € Ny, 0 < 91 < 1, 0, A > 0, and let .Z be
the class of all

(frup) = (€204Q x [a,b] x 2, Z;k, L) NGLY(Q  [a,b] X Z, Z; w, L))

XUBCT‘O(QZ) (57)

such that the parameter dependent initial value problem (55-56) has a solution
u(s,t) (which is unique, due to the assumption (57) on f) such that

sup JJu(s, 1)]| < A, (58)

sS€Q, t€a,b]

and moreover, if r = p =17, = p; =0, then for alln € N, w € Q)
sup HA?L,LU(JC57 UO(S))HB([a b),2) < )‘7 (59>
s€Q o

where f; for fixed s € @ denotes the function f(s,-,-) from [a,b] X Z to Z. We
define the solution operator

S F — B(Q x [a,b],7) (60)

for (f,uo) € F by L(f,ug) = u, where u = u(s,t) is the solution of (55-56).
For a continuous function ¢ : Q X [a,b] x Z — Z; we define a function

g:la,b] x C(Q,72) — C(Q, Z)
by setting for t € [a,b], z € C(Q, Z)
(9(t, 2))(s) = g(s,t,2(s)) (s € Q).

The following is the central result of this section. It relates the parametric
problem to the problem of a single Banach space valued ODE considered in
Section 2, with X = C(Q,Z) and Y = C™(Q, Z).
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Proposition 3.1. Given ro, 7,71 € Ng, 0 < g, 01 < 1, functions k, L : (0, +0c0) —
(0, +00),0,\ > 0, there are A\; > 0 and k1, Ly : (0,+00) — (0, +00) such that the
following holds. Let Z be a Banach space and let F be defined by (57). Then for
all (fyug) € F

(f_, UQ) € fT’g([CL,b] X C(Q,Z),C(Q,Z);Rl,Ll,U, )\1)
N F e (la,b] x C™(Q, Z),C™(Q, Z); k1, L1, 0, 1)

and

S(f,uo) = L (f,uo). (61)

Concerning relation (61), we note that we identify functions from B(Q X
la,b],Z), u = u(s,t), with functions from B([a,b], B(Q, Z)), u(t) = u(-,t). For
the proof of Proposition 3.1 we need a number of lemmas. We emphasize that
the constants (including the functions k1, L1) in the lemmas of this section do
not depend on Z and Z;.

Lemma 3.2. Given k, L, there are functions ki, Ly : (0,+00) — (0,+00) such
that the following holds: for all f € €™%¢(Q x [a,b] X Z, Z1; k), f maps |a,b] x
C™(Q, Z) to C™(Q, Z1) and, considered as such a mapping, satisfies

fec®([a,b] x C™(Q, Z),C™(Q, Z1); k1) (62)
and, if f € ‘5{%;0’9(@ X [a,b] X Z, Z1;k, L), then
Fecig(ab] x C(Q, Z),C™(Q, Z1); k1, ). (63)

Proof. We argue by induction over ry € Ny. Let 7o = 0. First we show that
if g1 Q X [a,b] X Z — Z; is a continuous function, then g is continuous from
[a,b] x C(Q, Z) to C(Q, Zy). Let t.t, € [a,b], z,z, € C(Q,Z) (n € N) be such
that

Tim [t, —¢[ =0, lim [lz, - z(lc@z = 0.

It follows that
K={z,(s): se @, neNtU{z(s): s Q}

is a compact subset of Z. Consequently, g is uniformly continuous on @ x [a, b x K
and therefore

lim sup Hg<37tmxn<3)) - g<57t7x(3>>”Z1 =0,

n—00 gc()

which is the continuity of g. The boundedness, Holder, and Lipschitz properties
of f are readily checked on the basis of those for f. This completes the proof of
the case 1y = 0.

14



Now let 7y > 1 and assume that the statements (62) and (63) hold for ro — 1.
We start with (62). Let f € €7%(Q X [a,b] X Z, Z1; k). Then by (48-51),

foe €7 (Q x [a,b] x Z, Zy; k)

g1 = g—f € %TO?LO’Q(Q X [G,b] X Z’X(Rd07 Zl); Fd)
S

gri= 2L e @ 0Q x a,b] < 7, £(2, 1)),

therefore, by the induction assumption,

.f S CO7Q<[aab] X CTO_l(Q?Z)’CTO_1<Q721>351) (64)
g€ C*(ab] x C"7NQ, 2),CTTHQ, L (R, Z1)); kn) (65)
g2 € C™([a,b] x C7HQ, 2),C™7HQ, L(Z, Z4)); k). (66)
Fix t € [a,b] and z € C™(Q, Z). Then
(45700)) (9 = o teao) + ol t.0(6) 212,
which means that p 4
o) = ai(t.2) + galta) (67)

(64-67) readily imply that f maps [a,b] x C™(Q, Z) to C™(Q, Z;) and f is a
continuous function from [a,b] x C™(Q, Z) to C™(Q, Z;). We omit the proof,
since it goes along the same lines as the argument below.
Now we show that f satisfies the boundedness and the Hélder condition for
ro. Let R > 0 and
x,Yy € RBCTO(Q,Z). (68)

This implies

d_a;
ds

IN
=y

(69)
Cro~} (@, (R%,2)

and together with (64-66)

‘|gl(t7 x)HCTO*l(Q,,Sf(Rdle)) < /fl(R)
192(2, x)”cm—l(@,z(z,zl)) < ri(R), (71)
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so inserting into (67) gives

d -
S CTO—l(Q7$(Rd07Z1))
< Hgl(tvx)HCTO*l(Q,X(RdO,Zl))
B dx
+ellg2(t, 2)loro-1(,2(2.20)) ds
Cro~H(Q,Z(R%,2))

< k1(R)+ cri(R)R.

Combining this with (70), we obtain

172 | o2y < F1(R)(eR + 1)
Furthermore, by (68),
‘ dv _ dy < [z = ylicroq.z)-
ds  ds||cro-1(g,. 2%, 2))

Let t1,ts € [a,b] and set

My = ma(B) (I = ol + 17 =yl )-

Then (64-66) imply

Hf_‘(tl)x) - f(t%yM Ccro—1(Q,7Z1) < MO
||gl(t17'r> - gl(t27y)||CT0—1(Q7$(Rd0,Zl)) < MO
192(t1, 2) = Go (s Wl cro1(0.2(2,20)) < Mo
Using (67), (69), (71-72), and (75-76) it follows that
d - d -
Hd—f(thx) - d—f(tmy)
s s CT0=1(Q,Z(R%,Z,))
< gt @) = it y)”cro—l(Q,g(Rdo,zl))
_ _ dx
+cl|ga(tr, ) = G2(t2, Y)lero-1(0,.2(2.21) ‘ s
llcro-1(Q,2 (@b 2))
dr dy
+ellga(te, Yl oro-1(g.5 ' = T
CromNQL(Z2)) || ds  ds Cro-1(Q. 2 (®0,2))

< (14 cR)My + cri(R) ||z — yllero(@,2)-
Together with (73-74) this gives
Hf(h@) - f(t%y)‘ Cro(Q,21)
< (1+cR)ki(R) <|t1 — to]? + [Jz — y“gm—l(Qz))
+ck1(R)||x — ?/HCTO(Q,Z)'
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Taking into account that by (68)
Iz = yllcro@.zy < CR) 4|1z = yllEro .2):

this proves p-Holder continuity and thus (62). To prove (63) for ro, it remains to
show the Lipschitz property. This is analogous to the previous argument and we
omit it here.

[]

Lemma 3.3. Given k, L, there are k1, L1 : (0,400) — (0,+00) such that for all
fe@mre(Q x [a,b] X Z, Z1; )

fec(la,b] x C™(Q, Z),C™(Q, Z1); k1) (77)
and for all f € G13"°(Q x [a,b] X Z, Zy; Kk, L)
fFecii(la,b] x C™(Q, Z),C™(Q, Z1); k1, Ly). (78)

Proof. First we show (77). We argue by induction over r. The case r = 0 follows
from (62) of Lemma 3.2. Now let r > 1 and assume that the statement holds for
r — 1. It follows from (48-51) that

f € ‘K””T_I’Q(Q X [a,b] X Z, Z1; K)

g1 = % c (gro’ril’g(Q X [a, b] X Z7 Zl; H)
go = g—i c (gro,rfl,g(Q X [Cl, b] X Z,X(Z, Zl); K)).

The induction assumption implies

foe ¢([a bl x €™(Q, 2), C7(Q, Z1); k) (79)
g1 € CM([a,b] x C™(Q, Z),C(Q, Z1); i) (80)
G € C7([a,b] x C™(Q, Z),C™(Q, ZL(Z, 2))); k). (81)

Now we study the differentiability of f with respect to t and x, as a function from
[a,b] x C™(Q, Z) to C™(Q, Z1). Let t1,t5 € [a,b], t1 # ty, x € C™(Q, Z), s € Q.
Then

f(ta, 2)(s) = ftr, 2)(s) _ f(s,ta,2(5)) = f(s, b1, 2(s))

to — 1 to — 1
1 1
_ / G5ty + 7ty — 1), 2(s))dr — / Gut + 7(ts — 1), 2)(s)dr
0 0

By (80), g1 is a continuous function from [a, b]x C™(Q, Z) to C™(Q), Z1), therefore,
with the integral below considered in C™(Q, Z;),

f(t27$) B f(tbm)
to — 11

1
= / 91(151 + T(tg — tl), ZE)dT
0
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and

lim sup [|gi(ty + 7(ta — t1), ) — Ga(t1, )| cro(@.20) = O
t2—t T7€[0,1]

Consequently, with differentiation meant in C™(Q, Z;),

of _
ot g1- (82)

We introduce the following mapping
V.C(Q,Z(2, %) = Z(C7(Q, 2),C™(Q, Z1))
given for w € C™(Q, L (Z, 7)), x € C"(Q, Z), and s € Q by
(Vw)z)(s) = w(s)z(s).
Clearly, V' is a bounded linear operator. This together with (81) yields
Vogy el ([a,0] x C™(Q,2), Z2(C™(Q,2),C™(Q, Z1)); [Vr1).  (83)
Next let t € [a,b], x,y € C™(Q, Z), 0 € R, 0 #0, s € Q. Then we have

ft.x+0y)(s) — f(t,2)(s) _ f(s,t,2(5) +0y(s)) — f(s.t,2(s))

7 7
_ /0 ga(5, 1, 2(5) + 70y(s))y(s)dr = /0 (Vas(t, z + 709))y) (s)dr.

Relation (83) shows that V o g is a continuous function from [a,b] x C™(Q, Z)
to Z(C™(Q, Z),C™(Q, Zy)). It follows that

flto+ 91;) —fte) _ /0 (Vaalt,z + 70y))y d. (84)
moreover,
o Te[o,nvyseugch,Z) 1V ga(t,x + 70y) = Vga(t, 2)l 2(cro@,2),c0Q.21)) = 0,
and hence
lim sup [(Vga(t,z +70y))y — (VGa(t, x))yllcroz) = 0. (85)

7€[0,1},y€Bcro(q,z)

From (84) and (85) we conclude that f is Fréchet differentiable with respect to
x as a function from [a,b] x C™(Q, Z) to C™(Q, Z;) and
97
G_:J; =V 0 gs. (86)
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Combining (79-80), (82-83), and (86) completes the induction and thus the proof
of (77). By (52),

Gral(Q x [a,b] X Z, Zy;k, L) € 65>0(Q x [a,b] x Z, Zy; 5, L).
Therefore relation (63) of Lemma 3.2 yields the required Lipschitz property, which

proves (78).
[

Given (f,ug) € %, we recall that we consider the solution u = u(s,t) of (55—
56) also as a function u(t) = u(-,t) in B([a,b], B(Q, Z)), the required bounded-
ness being a consequence of (58).

Lemma 3.4. There is a constant \y > 0 such that for all (f,ug) € % the
following hold: u(t) € C™(Q, Z) (t € [a,b]), u is the unique solution of

du(t) & B
o = ftu®) (telad]), ula)=u, (87)

considered as an equation in C™(Q, Z), moreover,

Nullsacrezy = A (88)
1AL (f, o)l B(apico@z) < A (neNweQ). (89)

Proof. Let (f,ug) € #. We start with a preliminary argument. By Lemma 3.3,
foe ¢l ([ab] x C™°(Q, Z),C™(Q, Z); k1, Ly). (90)
It follows that there exists a solution w(t) of

dw(t) -
i = Jbe®) (telab)),  wla)=u, (91)

considered as an ODE in C"™(Q, Z), on a maximal interval [a, b) with a < b; < b.
Applying d5 to (91) we get

400,00 = ( Go0).6.) = (F(e.0(0).0) = f(5., (0(0).6) (¢ € fa.b)

and
(w(a)7 58) = (u()? 58) = u0(5>‘
By uniqueness of the solution to (55-56), we conclude

(w(t),05) = uls,t) = (u(t),0s) (s €@t €la b)),

hence
w(t) =u(t) (t€la,by)). (92)
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Now assume that

sup ||w(t)loro(g,z) = Ro < 00 (93)
tE[a,bl)

Then (90) implies that for all ¢ € [a,b], z,y € (Ro + 1)Bero(g,2)

1f(t2)llcro@z) < kKi(Ro+1)
1f(t,z) = ft,y)llcrozy < Li(Ro+ 1)z —yllcroq,z2)-

Consequently, there is a ¢ > 0 such that for any by € [a, b;) the solution w(t) of
(91) on [a, by] can be continued to a solution on [a, min(by + d,0)] (see, e.g., [1],
Ch. 2, Cor. 1.7.2, or use Banach’s fix point theorem). It follows that b, = b and
w(t) can be continued to a solution of (91) on [a, b], that is,

!
i

w € C'([a,b],C™(Q, Z)) (94)

and

dl;_it) = Fhw(®) (telwb),  wla)=u. (95)

Since u(s, -) € C'([a,b], Z) (s € Q), we use continuity to conclude from (92) and
(94) that

w(t) =u(t) (t€la,b]) (96)
and
S [u(@)| o2y < o (97)

To summarize, so far we showed that (93) implies (94-97).
After this preparation we prove the lemma. We argue by induction over ry.
Let 7o = 0. By (58) of the definition of .# we have

sup [[u(t)|lcg = sup  lu(s, )]z < A
tela,br) s€Q,t€a,br)

Therefore (93) holds with Ry = A, so (96) and (97) imply (88) for rq = 0.
Moreover, if r = o =1 = p; = 0, then (89) follows by (59), while for r + 0 > 0
or 1 + 01 > 0 we note that by (51) and (57)
foe 6@ xlab] x Z, Z; s, L)
fe (@ x [a,b] x Z,Z;k, L)
and therefore, by Lemma 3.3
]E € C{ﬁ)([a? b] X C(Q,Z),C(Q,Z);Hl,Ll)

f e b ([a,b] x C(Q,2),C(Q, Z); k1, Ly).

Lip
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Now (89) is a consequence of (the already proved) relation (88) for ry = 0 and
Proposition 2.1 (for n < vy it follows directly from the boundedness properties of
f and wuy).

Next let o > 1 and assume the statements are true for ro— 1. Let (f,ug) € %
and put

of

9= 5o € EThe(Q X [a,b] X Z, L(R®, Z); k) (98)
ga = % cE Q% [a,b] x Z, L(Z,7); k). (99)
By Lemma 3.3,
g€ C([a,b] x C™7HQ, Z),C™HQ, L (R™, Z)); kn) (100)
g2 € C™([a,b] x C™(Q, Z),C™(Q, L (Z,Z)); k1). (101)

We start with the proof of (88). By the induction assumption, u(t) is the solution
of (87), considered in C™~1(Q, Z)), and

HUHB([a,b],crrl(Q,z)) < ¢p. (102)

From (100-102) and the assumptions on uy we conclude that there is a ¢; > 0
such that

fl[lpb]||§1(t7U(t))||cr071(Q7z(Rdo,Z)) < a (103)
cla,
tS}lI;]HgQ(t>u(t))“CTO*l(Q,f(Z)) < a (104)
€la,
d
‘ﬂ < o (105)
ds llcro-1(@.2 2))

By uniqueness, w(t) = u(t), where w is the solution of (91), so u(t) € C™(Q, Z)
for all t € [a,b;) and u(t) is continuously differentiable as a function from
[a,b1) to C™(Q,Z). Let D be differentiation %, considered as an operator

D e Z(C™(Q,Z),Cr 1 (Q, £ (R%, Z))). Then applying D to (91) with w = u
and inserting (98-99), we get

d(Du(t))  _du(t) 5
T D di = D f(t, u(t))
= it u(t)) + ga(t, u(t)) Du(t)  (t € [a,b1))
Du(a) = Duy.

Integrating with respect to ¢, we obtain for ¢ € [a, by)
t
Du(t) = Duo+ [ (@i(rulr)) + galr, u(r) Du(r)) dr.
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Using (103-105) we conclude for ¢ € [a, b;)
“Du(t)”C"o*(@g([{gdo,z))

t
< ||DUO|C7'01(Q,$(Rd0,Z))+/ 191 (7, w(T)) | ro-1(@.2mo 2)) AT

t
+/ C2 |Ig2(77U(T))HCTO—l(Q,.i”(Z)) “DU(T)HCTO—l(Q,E(Rdoz)) dr

t
< o4+ ((b—a)e + 0102/ HDU(T)Horrl(Q,y(RdO,Z)) dr.

Since t — Du(t) is a continuous function from [a, b;) to C™~1(Q, Z(R%, 7)), we
can use Gronwall’s lemma to get

ciea(b—a) .

Sup HDu@)HCTO*l(Q,E(RdO,Z)) < (o4 (b—a)a)e = Cs,
tE[a,bl)
which together with (102) gives
sup ”w<t>HC’“0(Q,Z) = Ssup Hu(t)”()ro(cg,z) < max(cy, c3) 1= cu. (106)

tefa,br) tefa,b1)

Consequently, (93) holds with Ry = ¢4, so (96) and (97) give (88) for ry.
Now we turn to (89). By (11-14),

A o (f o) = v € B([a, ], C(Q, 2)),

where

(t) . pk70<t) if te [tkatk—H) and 0<k<n-1
B TR if t=t,

and for k=0,...,n—1

preot) = wp+ flte,up)(t —te)  (t € [te, trsa]) (107)
Ugr1 = Up+ hf(fk+1,pk,o(fk+1))- (108)

The induction assumption implies

t o < 109
Ogrilgzilteﬁliil] HPk,o( )HC 0-1Q,2) = o ( )

and
Olgl%xn HukHCTO—I(Q,Z) < <o (110)

Using (90) and ug € C™(Q, Z), it readily follows from (107-108) that for 0 <
k<n-1

pk70(t) S CT()(Q,Z) (t € [tk,thrl], 0<k<n-— 1) (111)
u, € C™(Q,7Z) (0<k<n). (112)
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Differentiating (107) and (108), we obtain for 0 < k <mn —1

d du du
pk’ocgka) = dsk + (&1 — o) g1 (e, wr) + (o1 — tk)§2<tk7uk)d_8k (113)
du du B
dk;l = dsk + hg: (§k+1,Pk,0(§k+1))
d
+hgs (£k+1;pk,0(£k+l))%§k+l)- (114)
Inserting (113) into (114), we get
du du ~ _ du
% = d—; + g1 (Et1, Pro(Ees1)) + hgo (§k+1,pk,o(§k+1))d—;
+h(Er1 — ) G2 (b1, Pro(Es1) ) G (B, ur)
du
+h(Eer — 1) G2 (Sks1, Pro (Ept1) ) G2t Uk)d_;
Hence,
dug11 duy
— = (I hv,)— + h 11
s (Iz + hvy) s + hwy, (115)
where

e = Go(&s1,Pe0 (&) + (1 — ti) G2 (Eks1s 0 (Eit1) ) G2 (B, wr)

wy = §1(&er1,Pe0(Eet1)) + (Ehrr — o) 2 (b1, Pro (S, Eks1)) G (b, )
By (100-101) and (109-110) it follows that

ohax [villororqezy = @ (116)
008X 1llerosq eminz) < e (117)
Moreover, by the assumption on uy,
d
'ﬂ < o (118)
ds Ccro-1(Q, 2 (R4, 7))

We have by (115-117)

' dug1
ds |lgro-1(Q,2(m%,2))
duk
< (1 + coh ||'Uk||C""0*1(Q,Z(Z))> ‘ s + hllwkllero-1(g, 20,2
5 llero-1(Q.2(r%,2))

duk

< (1 + Clcgh) ' S

+ Clh.
Cro=1(Q,Z(R%,Z))
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From this and (118) we conclude for 1 < k <n

k—1
d .
‘ ﬂ S 0'(1 + 61C2h)k + Clh Z(l + Clc2h)j
dS CTO*l(Q,,Z(RdO,Z)) j=0
1 h)F —1
< a(1+clcgh)k+c1h( + cico )
cicoh

< 0'(1 + 1/02)(1 + clc2h)" < 0—(1 + 1/02)661C2nh
= o(l+ 1/02)601‘32“’*“) = c5.

Combining this with (110) gives

[nax urllcro(q,z) < ca := max(co, c3),

which, taking into account (107) and (90), also yields

tllor <
og%%f—ueﬁiﬁﬂ ||Pk:,0( e 0(Q,2) = G5,

and hence the desired result.

[]

Proof of Proposition 3.1. The result follows from Lemmas 3.3-3.4, taking into
account that (88) and (89) for o > 0 imply the respective estimates also for
To = 0.

4 The algorithm and its analysis

For | € Ny let T; be the equidistant grid on @ of meshsize (max(rg,1))7127! and
let {Qu : i = 1,2,...,2%!} be the partition of @ into cubes of sidelength 2.
Define the following operators Ej; and Ry; acting on ®(R%, Z), the space of all
functions from R% to Z: For f € ®(R%, Z) and s € R put

(Ehf)<8) = f(Sli+2ilS) (119)
(Ruf)(s) = f(2'(s = su)), (120)

where s;; is the point in @); with minimal coordinates. We also apply these
operators to functions which are defined on subsets of R%. In this case we assume
that the function is extended to R% by zero. Let for f € ®(R%, 7)

PF=3 fla)e, (121)

be the Z-valued tensor product Lagrange interpolation operator of degree
max(rg, 1), where (a;)iL, are the points of Iy and (p;)iL, are the respective
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scalar Lagrange polynomials, considered as functions on R%. If Prax(ro,1) denotes
the space of polynomials on R% of degree at most max(ry, 1), with coefficients in
Z, then we have

Pg=g (9 € Pumax(ro1))-
Define P, : ®(Q, Z) — C(Q, Z) for | € Ny by
(Pf)(s) = (RuPEuf)(s) (s € Qu, f € ®(Q,2)),

thus, by (121),
(AN = 3 o+ 270,25 = s0)) (5 € Qu).

so P, is Z-valued composite with respect to the partition @);; tensor product
Lagrange interpolation of degree max(rg,1). Hence,

(Pf)(s) = f(s) (sely, fed@2))

and P is of the form

Pf=Y ) (f€d(Q 2)) (122)

sely

with 1 € C(Q).

Let (f,up) € .. We define the following multilevel algorithm for the ap-
proximate solution of the parametric problem (55-56). Let ly,l; € Ny, Iy < Iy,
Nigy---,ny € Ny w € £, and set

Aolfo) = PZO((A;lo,w(fs,UO(S))>S€FZO)

1
+ 3 A= R (Anufou() o, ) (123)

I=lp+1

where we use the respective algorithms given by (7-12). Let card(<7,) denote the
number of function evaluations involved in o7,. We have

Iy
card(,) < cZnﬂdol. (124)
1=lo

Note also that the number of arithmetic operations of <7, (including additions
in Z and multiplications of elements of Z by scalars) is bounded from above by
ccard(4,) for some ¢ > 0.
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Theorem 4.1. Let ro,7,71 € Ng, 0 < 0,00 < 1 with r+ 0 > r1 + 01, let
k, L : (0,400) — (0,400), o, > 0, and 1 < p < 2. Then there are constants
c1,co > 0 and vy € N such that the following holds. Let Z be a Banach space and
let F be defined by (57). For all ly,l; € Ny with ly < Iy and for all (nl)élzlo CN
with ng > vy (lo <1 < 1y) the so-defined algorithm (,),ecq satisfies

sup |7 (f,u0) — 2, (f, uo)l B(@x[ab),2)

(f,uo)Eﬁ
I
< a2 foan, e Y 27T (weQ) (125)
I=lp+1

and for all I* with lop < 1* <[y

) 1/p
sup (E | (f,wo) — A (f, uO)HB(Qx[aJ)],Z))

(f,uo)@?
< 27Tl 4 co(lo + 1)1/27'p(Z)nl_0T_g_1+1/p
I I
oy Y (L D), (Z)2 70 T oy N ool e (126)
I=lp+1 I=l*+1
Remark 4.2. Observe that the restriction r+90 > ;401 in Theorem 4.1 is no loss

of generality. Indeed, if 7+ o < 11 + g1, then either r < 1y or (r=1r1) A (0 < 01).
It follows from (52-54) that in both cases we have

Cgro,rl,gl (Q % [CL7 b} X Z, Z, K, L) g %O,KQ(Q X [CL, b] X Z, Z, 2/€,L>.

Lip Lip
Consequently,
G (Q x [a,b] x Z, Z; 5 /2, L)
C G (Q X [a,b] X Z, Z; 5, L) NG (Q X [a,b] X Z, Z; ki, L)
c %Ifi()p;rwl(@ X |a,b] X Z,Z; Kk, L),

which by (52) and (57) means that the case r+ ¢ < 71 + 01 is essentially the same
as the case r =ry, 0 = 01.

For the reason to consider a variable summation index [* in (126) we refer to
Remark 2.4.

Corollary 4.3. Assume the conditions of Theorem 4.1 and let Z be of type p.
Then there are constants c1_s > 0 such that for alln € N with n > 2 the following
hold. Setting

logn r+o0—17r— 01
I, = c = L, 127
1 Uﬂ ’ h—gww—m—gll (121)
mo= y [200D] (1 <1<l), (128)
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the so-defined algorithm (&Z,),cq fulfills
card(<Z,) < cinlogn (w € Q). (129)
Moreover,

sup |7 (f,u0) — Ao(f,u0) || Biaxtan.z) < con™ (logn)™  (w € Q). (130)

(f,uo)eF
where
270
Ay f o To
v, = o trte—ri—a (r+eo) & >t (131)

. if F<rnto

and
0. — 0 if 2—3 #ri+ 01

! 1 Zf 2—3 =T + 01-

Finally,

1/p
Sup <E||y(fauo)—%(f,u0)||%(c2x[a,b},z)> < eyn 2P (logn)™=®), (132)

(f:uo)e‘g[

with
ro
— d 1_1> f o 11
va(p) = G trto-ri—a (T_'_Q—i_ p if o~ Tt on Tt p (133)
@ if Z—EST’1+Q1+1—%
and
bip) = L2 T aFnTatlog
S Uf FeEntoat+l-.

First we derive Corollary 4.3 from Theorem 4.1.

Proof. Relation (129) follows directly from (124) and (128). Next observe that
by (127)

ro
I, — 1y = do I 134
P {ggww—n—ml ’ (134)

and therefore

—r—p

n, 9—(r+e)do(li—lo) _ 9—(r+e—ri—e1)do(li—lo)—(r1+e1)do(l1—lo)
0

IAINA

9—rolo—(ri+e1)do(li—lo) (135)
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Furthermore,
zfrolnlfm*m < 27r0l7(7‘1+g1)d0(l17l) (ZO <1 < ll) (136)
Now (125) together with (134-136) gives

sup ||L(f,u0) — Z(f, u0)l| B@x[ab).2)
(Fu0)EF

l1
< . Z 9—rol=(r1+e1)do(l1—1)

l=lg

027r0l07(r1+91)d0(11*10) < cn U1 if :l_o >1r1+ 01

—= 0
< { eli—lo+ 127 <enT/logn if =11+ 0
C2—7‘0l1 S Cn—'/'o/d() lf :l_g < Tl + Ql?

which proves (130). In a similar way, setting 5 = r; + o1 + 1 — 1/p, (126) with
I* =1, and (134-136) yield

1/p
sup (IE | (f, wo) — “(f, uO)H%(QX[a,b],Z))
(fruo)eF

1
< CZ([ + 1)1/22—7“01—[3(10(11—5)
I=lp
c(ly + 1)1/227rolo=Bdolli=lo) < cp=v2(P) (log n)1/2 if °>g

do

< c(lh —lo+ 1)l + 1)1/22_T011 < cn_ro/do(log n)3/2 if 2—8 =0
c(ly +1)12277l < en ol (logn) /2 it %<4
which shows (132). O

Remark 4.4. Concerning Corollary 4.3 we note that balancing the n; more clev-
erly could reduce the cost to ¢;n in some regions of the smoothness parameters.
However, this balancing could lead to further logarithmic factors in either the
deterministic or the randomized setting. Since in view of Corollary 5.2 in general
Banach spaces even the optimal exponent is known only up to an arbitrary small
e > 0, we neglect the aspect of improving the logarithms. See also the comment
at the end of Section 6.

Also note that the choice of the parameters (127-128) depends only on the
smoothness class, not on the setting. This means that the randomized algorithm
satisfies the (usually stronger) error bound of the randomized setting, while each
realization also satisfies the deterministic bound.

The proof of Theorem 4.1 will be given after some preparations. First we
show that there are constants cq,co > 0 such that for all Banach spaces Z and

[ €Ny

|Pllzcw@z) < a (137)
IJ = Pl zcr@ac@z) < @27, (138)
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where J : C™(Q, Z) — C(Q, Z) is the canonical embedding. This is well-known
in the scalar case and easily extended to the Banach space case as follows. Denote
by P and J® the respective scalar operators. Then we have

IPifloz = sw [[(Bf,2) lo@ = sw [|PF (2] o0
Z*GBz* Z*EBz*
< a s [[(£.2) e = alflees (139)
z* Z*

and similarly,

I = Bi)fllewn
— sup ||(JF— BRIR) (£.2)

z*€Bgx

c@Q) < 022—7*0[ sup || (f: Z*) ”CTO(Q)

Z*GBZ*
()
—, <
ds’ C(Q.2; (R B))

= 622_rol||f||cm(Q7z). (140)

= 27 max sup
0<j<ro 2*€Bgx

In order to apply Proposition 2.3 we now construct operators 7; : C(Q, Z) —
C™(Q, Z) with certain suitable boundedness properties. Put

1 o
U= [_ max(rg, 1)’ L max (7, 1)1 ’
T, ={1,2,...,2%1) and for [ € Ny, i € T,
Ui = si; +27'U. (141)

Let n € C*®(R%) be such that n >0, 7 =1 on @, and supp () C U. Then

Y (Run)(s) =1 (s€Q,1€N). (142)

1€
Define functions n; on Q (i € Z;,1 € Ny) by

R
M) = S Ry (o)

We define T} : ®(Q, Z) — C™(Q, Z) for | € Ny and f € ®(Q, Z) by

(Tif)(s) = Y _mils) (RuPEif)(s) (s € Q). (144)

€I

(s €Q). (143)

consequently, using (119) and (121),

(Tif)(s) =Y D flsu+ 27'a;) ma(s) Rug(s) (s € Q). (145)

icT, j=1
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Thus, 7; is of the form

Tif = f()s (f€®Q,2)) (146)

sel’y

with (5 € C™(Q).
For the proof of the next lemma we denote for f € C™(Q)
a"f

ds™

|f|m7Q = ‘

C(Q,Zm (R R)) .

Lemma 4.5. There are constants ci,co > 0 such that for all Banach spaces Z
and | € Ny

1Tl 2@z < @ (147)
ITill.zcro@.z)) < ca (148)
Moreover, for f € ®(Q, Z)

(Tif)(s) = f(s) (s ell). (149)

Proof. We first prove the result for Z = R. We have
mi(s) > 0 (s€Q) (150)
mi(s) = 0 (se@\Uy) (151)
D mil(s) = 1 (s€Q). (152)

1€1;

Moreover, there are constants ¢y, co > 0 such that for m € Ny, 0 < m < ry, [ € Ny

| Riinl] o (gaoy < c1 2™ (i €y (153)
and
) < ml'
| > R ]Cm(Rdo) <2 (154)
1€y

From (142-143) and (153-154) we get for 0 < m <y
71 llem gy < c2m, (155)

First we show (149). Let s € I';. If s € Qy;, then (R;PE;; f)(s) = f(s). On the
other hand, by the definition of the support of n, if s € Qy;, then s ¢ U2 (the
interior of Uy;), hence (R;n)(s) = 0, and therefore 7;;(s) = 0. This together with
(144) and (152) implies (149).

Relation (147) is an immediate consequence of (144) and (150-152). Now we
turn to (148). Due to (147), we can assume that 7o > 0. By (121), for f € C"™(U)
and 0 <m < rg

I1Pfllem@w)y < cllfllerow),
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and consequently,

|f = Pfllemw)y = giegl)fm 1(f —9) = P(f = g)llemw)

< c inf [|f—gllerow) < c|flrow (156)
gEPro

where the latter relation is an application of Theorem 3.1.1 from [2] (this theo-
rem is formulated for Sobolev spaces W2°(U), but since f, Pf,g € C™(U), the
corresponding (semi-)norms coincide). Let f € C(Q) and let f € C™(R%) be
an extension of f with )

[flleroany < ellfllemo @,
which exists due to the Whitney extension theorem, see [30], [18], Th. 2.3.6. From
(151) and (152) we conclude

1f=Tifllcro@ = H Z’fm(f—RliPEuf)H

i€y cro(@)
< cmax|ni(f — RiPEif)]cro)- (157)
1€,
Furthermore, for 0 < m <y
IRigllemwey < 2™ llgllemwy (9 € C™(U)) (158)
and, using (155),
To
Imiglicro@run < ¢y 27 ™ lgllom@nuy (9 € C(@NUK)).  (159)

m=0

Applying (158-159) and (156), we obtain
I (f — RuPEif)llcro@ = lImi(f — RuPEiif)|lcro@nu)

To
< ¢ 2007 f — RyPEy flcmqnun)

m=0

o
c Z 2(ro—m)l||f — RliPElifHCm(Uu)

<
m=0
70 5 _ _
< 2> |Euf = PEifllonw)y < 2 Euflu. (160)
m=0
Finally,
max | Eif oo = 277! max | |y, < 277 £l mio

< 27| fllgroraoy < 27| fllero(@y- (161)
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Combining (157) and (160-161), we obtain

| Tifllero@) < N fllero) + 1 f — Tif|

which concludes the proof of (148) for Z = R.

Now let Z be an arbitrary Banach space and let 7} be defined by (144) for Z,
while T} denotes the respective operator for R. Using the already shown scalar
case, the general case of (147) follows analogously to (139). The Banach space

case of (148) is derived as
P .
dsi ’

& (TF (f,2"))
ds’

cro@) < cll fllero@):

|Tifllcro@,zy = max sup

0<j<r0 2*€ B . C(Q,2;(R% R))

= sup max
z*€B g« 0SJ<T0

= sup [T (f,2")
z*€Bgx

< ¢ sup || (f,27) lcroo) = el fllcro(,2),
Z*GBZ*

C(Q,%Z;(R%,R))

Cro(Q)

where for the latter relation we refer to the last part of (140).

We also need the following result.

Lemma 4.6. There are constants ci1,co > 0 such that for all 1 < p < 2, p <
q < oo, for alln € N, and for any Banach space Z and measure space (M, ) the
following hold:

Tp(Lo(M, 11, 7)) < e1y/qmy(Z) (162)
7,00 (2)) < co/log(n+1)7,(2). (163)

Proof. We start with (162). Let (g;)*; C Ly(M, p, Z). Then we have

m q/p m
p q
EH €9 EH €9
( 2 Lq<M,u,Z>) 25, s
= /EHZ&gi(t)
M i=1

with (g;)7, a sequence of independent centered Bernoulli random variables. Next

IN

Cdu(), - (164)
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we apply the equivalence of moments and the type inequality to obtain

Amﬁiﬁuﬂww (165)
< (eya)” /“(EHEja% )" autt (166)
< (ein@)r [ (o) ) (167)

with a constant ¢ > 0 independent of p and ¢ (see, e.g., [23], p. 100, for the step
from (165) to (166)). Using the triangle inequality in L/, (M, 1), we get

[ (Staoi) a
a/p

" p/a\ ¥/P m
(Z ([ 1aonzau) ) :(aniuiqwz)) (168)

Joining (164), (167), and (168) yields (162). To show (163) we note that the
identity map I : £;(Z) — (2 (Z) satisfies
lzll =1, [lI;"] = n'/". (169)

If n > 4, we set ¢ = logn, so ¢ > 2> pand n'/? < 2. For n < 4 we put ¢ = 2.
Now (163) follows from (162) and (169).
O

Proof of Theorem 4.1. Our goal is to apply Proposition 2.3 with X = C(Q, 2)
and Y = C™(Q, Z). Using that I'y, C I'; for k <[, it follows from (122) and (149)
of Lemma 4.5 that

PTi=P (k<) (170)

We put for [ € Ny
Xl = E(O(Qaz)) C C(Qa Z)7 }/2 = E(OTO(Q7 Z)) - C"‘O(Q)Z))

so X; = Y] algebraically, but X; is endowed with the norm induced by C(Q, Z)
and Y; with the norm induced by C™(Q), Z). Next we derive estimates of 7,(X;)
and 7,(Y;). For i € Z; we let V; be the linear vector space

V}; = span {mlekwﬂQ” ke withU)yNQu#0,7=1,... ,li} .
Furthermore, let

Xi = (Vi lew) Vi = (Vis o @)
Xi = (Vi®Zllle@un). Yi= i@ Z|lleo@un)
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where ® denotes the algebraic tensor product. We observe that by (145), for

feC@,2) i
Tlf‘sz' € Xy

Moreover, for m = 0, rg

1T fllem@. = max | Tiflaull e g, 2)

Consequently, X; can be identified isometrically with a subspace of

X, = (@ X,i> (171)
and Y; with a subspace of
i (@ Y> | (172
i€T; ~
It follows from (141) and (151) that there is a constant ¢ > 0 such that for all
leNy, 1€
dy; = dimVj; <ec. (173)
Two Banach spaces Z; and Z are called c-isomorphic, where ¢ > 1, if there is
an isomorphism T : Z; — Zy with ||T|||T7Y| < ¢. The Banach-Mazur distance

d(Zy, Zy) between Z; and Z, is defined to be the infimum of all such ¢. Next we
show that there is a constant ¢ > 0 such that

d(Xp, 0% (2)) < ¢, d(Yi, % (2) <c¢ (1€NyieT). (174)

o0

Indeed, it suffices to consider Y/h-, the case Xh- follows by setting ro = 0. Let
(gk)zil be an Auerbach basis of Y};, that is,

dy;

Z QkJk
k=1

Such bases exist in every finite dimensional Banach space, see [24], Prop. 1.c.3.
Now define T : V}; @ Z — (4i(Z) for
dy;

w=Y g®uecVi®Z
k=1

dy;

< ow| (w €R E=1,....dy). (175)
k=1

max |oy| <
1<k<dy;

Yy,

by Tw = (2){%,. Then

dli dli d]
o _ * 9k
Jw] Vi gk @ 2 = max max (zk, 27) ==
- 0<j<rg z*€Byx dsi
k=1 Yy, = C(Qui,Z; (R% R))
dli dli
= max g 2, 27 gr = max g 21, 27 g
z*€Byx (21, 2) g 2*EB (21,27) g
= CT0(Quq) = Y
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Moreover, using (175), it follows that

ITwll g = max fla] = max max |(z,27)]
dy;
< e[S
< e |3 G0
k=1 Yi;
dlz
< 21161%?*2\ 2 27) | < iy max lzgl| = digl| Tewl] s )

hence ||T|[|IT7!|| < di, which together with (173) gives the second relation of
(174).
From (173) we get

my = Zdlz < 2ol (l S No) (176)

i€T;
It follows from (171), (172), and (174) that
d(X,, 5(2)) < ¢, dV, 02 (Z)) < e (1 €Ny,
and therefore

(X)) < (X)) < en((3(2))
(Y1) < 1Y) < en (i (2)).

This together with Lemma 4.6 and (176) implies that there is a constant ¢ > 0
such that for all [ € Ny

(V) <c(l +1)'V21,(2), 7,(X)) < c(l+1)Y27,(2). (177)

Furthermore, if f € %&’S’O(Q X |a,b] x Z,Z; kK, L), we get from (146) and (149)
that for all [ € Ny, t € [a,b], x € C(Q, Z)

Ef(tvx) = Z(]E(t <ls Zf S, t 33 Cls

sel’y sely

= ZfSt (Tix)(s)) Qs = Z(f(t,Tlx))(s)Qs
sely sely
= Tif(t, Tiz). (178)
Similarly, for all x € C(Q, Z) and s € Q

(f(t,l‘),5s) = f(S,t,l‘(S)):f<8,t, (:C,ds)) :fs<t7 (:E,és))
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By Lemma 3.2, f € Cﬁ’ig([a, bl x C(Q,2),C(Q, Z); k1, L) for some k1, Ly and by

definition, see (48-50), fs € Cﬁig([a, bl x Z,Z;k,L). Now we apply Lemma 2.2
with T'= 6§, and g = f, and obtain

(AnywlFo0),6.) = Ap W(feuo(s)) (s € Q) (179)
(A (Fru),8) = A (fouols) (s€Q o <I<h).  (180)

As a consequence of (25), (123), (179), and (180), we can relate algorithm .o,
for the parametric problem to algorithm A, for the general Banach space valued
problem of Section 2 as follows

Ao(fru0) = Plo((Azzovw(fs’UO(S))>serlO)

£ 30 (A ) (A o).

l1

= ‘PIOA:LlO,w(fJ Uo) + Z (‘Pl - ‘Pl—1>Azll,w(.f7 uO)

l=lp+1

= A(f, ). (181)

We put -
Ko =A{(f,u0) = (fiuwo) € F}.

Then Proposition 3.1 gives

,CO g Fr@([aab] X C(QaZ)>C(Q> Z);K17L170:>\1)
NF e ([a,b] x C™(Q, Z),C™(Q, Z); k1, L1, 0, \1). (182)

Furthermore, (137), (147-148), (170), (178), and (182) show that the assumptions
of Proposition 2.3 are fulfilled. Therefore (31) of Proposition 2.3 together with
(61), (138), and (181) prove (125). The estimate (126) follows from (32) of
Proposition 2.3 together with (61), (138), (177), and (181).

[

5 Complexity

We work in the setting of information-based complexity theory, as discussed in
[29, 27]. For details on the notions used here we refer to [13, 14]. An abstract
numerical problem is described by a tuple P = (F, G, S, K, A). The set F is the
set of input data, in our case F' = .%, (G is a normed linear space and S : F — G
an (in general nonlinear) operator, the solution operator, which maps the input
Y € F to the exact solution S(¢). In our case we have G = B(Q X [a,b], Z) and
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S = .. Furthermore, K is a nonempty set and A a set of mappings from F' to
K, the set of information functionals. In our case K is Z and A is given by

A={0s1.: seQ,t€lab],ze Z}U {0s: s € Q}, (183)
where for (f,ug) € .F

Os,2(fru0) = f(s,1,2),  0s(f,u0) = uo(s). (184)

So the admissible information is Z-valued and consists of values of f and .

Below ede(7, %) and e*(.,.#) denote the n-th minimal error of . on
Z# in the deterministic, respectively randomized setting, that is, the minimal
possible error among all deterministic, respectively randomized algorithms, that
use at most n information functionals.

The following theorem, which is the main result of this paper, gives almost
sharp estimates of the deterministic and randomized minimal errors and hence,
of the complexity of the parametric initial value problem. Moreover, combined
with Corollary 4.3, it shows that the upper bounds are realized by the multilevel
algorithm presented before, more precisely, in the deterministic case by .7, for
any w € Q, and in the randomized case, by (4,).cq, with parameters chosen
in an appropriate way. Concerning the assumption r 4+ o > r1 + g1, we refer to
Remark 4.2.

Theorem 5.1. Let ro,r,71 € No, 0 < 0,01 < 1, withr+ 0 > r1+ 01, K, L :
(0, +00) — (0,400), and o, > 0, where we assume that

ko := inf k(R) > 0. (185)

0<R<400

Let Z be a Banach space, and let F be defined by (57-59). Then in the deter-
manistic setting,

n 2 eI F) Rog 1, (186)

where vy was defined in (131).
Moreover, let 1 < p < 2 and assume that Z is of type p. Let py denote the
supremum of all py such that Z is of type p1. Then in the randomized setting,

n~v2(Pz) < (L F) Klog nwz(io)7 (187)
with vy given by (133).

It is readily seen from (133) that vy(p) is a continuous, monotonically increas-
ing function of p € [1,2]. It follows that the bounds in the randomized case of
Theorem 5.1 are matching up to an arbitrarily small gap in the exponent. Un-
der additional assumptions, upper and lower bounds are of the same order up to
logarithmic factors.
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Corollary 5.2. Assume that the conditions of Theorem 5.1 hold. Let py be the
supremum, of all p1 such that Z is of type p1. Then for each € > 0

n—v2(Pz) < ezan(y,g) < nv2pz)te
If, moreover, the supremum of types is attained, that is, Z is of type pz, then
nv2(pz) < e (S, F) <1og n—v2(Pz)

The latter assumption is satisfied, in particular, by spaces of type 2 and, if 1 <
p1 < 00, by spaces X = L, (M, i), where (M, p) is some measure space.

Proof of Theorem 5.1. The upper bounds follow from Corollary 4.3. To show the
lower bounds, let ., : C'(Q % [a,b], Z) — B(Q, Z) be given for f € C(Q x|a,b|, Z)
by

(Sof)(s) = / fs.)dt (s € Q).

This is the operator of Z-valued definite parametric integration, with a one-
dimensional integration domain. Define

Vi:C(Q X [a,b], Z) — C(Q x [a,b],Z) x C(Q, Z)
for f € C(Q % [a,bl], Z) by
Vif=(f,0) (188)

and
Vo: B(Q X [a,b],Z) — B(Q, Z)

for g € B(Q X [a,b], Z) by
(Vag)(s) = g(s,0) (s € Q).

Then we have

Val| = 1. (189)

For f € C(Q X [a,b],Z) (considering functions on @ X [a,b] as functions on
Q@ % |a,b] x Z not depending on z € Z) the solution u = .(f,0) of

d
au(s,t) = [fls,t) (se@,telab])

u(s,a) = 0 (s€Q)
u(s,t):/ f(s,7)dr.

Consequently,
S =Vo0. S0 V. (190)
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Moreover, if f satisfies

1 llc@xian.z) < (0—a)™'A, (191)
then
sup u(s, t)|| < A (192)
SEQ,tEa,b]

Furthermore, according to (12-14), forn € N, w € €, s € () we have Ag}w(fs, 0) =
v(s, -) with

. pk’o(s,t) if te [tk,tk+1), 0<k<n-— 1,
’U<37t) - { U,n(S) if t= t,

up(s) =0, and for 0 < k <n—1,1t € [ty, tp1]

pk,o(S, t) = Uk(S) + (t — tk)f<8, tk)
ups1(s) = wk(s) + hf(s, &)

So (191) also implies

21615 HAg,w(me)HB([a,bLm <A (193)

Let ¢y be a C* function on R% with support in @ and sup,cq |¢o(s)| =

oo > 0, and let mg € N. We divide the cube @ into mgo congruent subcubes
Qi (i =1,...,md) of disjoint interior. Let s; be the point in @; with minimal
Euclidean norm and define

©00.i(8) = po(mo(s —s;)) (s€@Q,i=1,... 7mgo).

Furthermore, let ¢1 be a C* function on R with support in [a, b] and | fab p1(t)dt| =
o1 > 0. For my € Nwelet t; =a+ j(b—a)/m; and

01,(t) =pi(a+mi(t —t;)) (te€fab],j=0,...,m —1).
Finally, let (z;)72y ' C By be any sequence (to be specified later on) and define
Yij(8:1) = @o.i(s)p1,5(t)z;-
Denote g, = {1,...,mi} x {0,...,m; — 1} and set

WO = > Gyt c 6y € [~1,1], (4,5) € Inmgum ¢ - (194)

(i)j)ejmoﬁnl
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Taking into account (185), we observe that there is a constant ¢y > 0 such that
for all mg,m; € N,

comy” Wom S Gun®(@Qx [a,b] X Z, Z; 5, L) (195)
comg °my " gl\lf?nmml C %{fp” (@ % [a,b] x Z,Z; Kk, L) (196)
0o, S (b= a) " ABc(@xab,2)- (197)
We put
Uyomy = Comin (mfrig,mamml e 91) \Il?no i (198)

thus, by (195-197)

Upory € %ﬁ;@(Q x [a,b] x Z, Z; Kk, L)
N Cﬁﬁ“fpn “Q x[a,b] x Z,Z; kK, L) (199)
‘Ilm07ml - (b - a) )\BC(QX[aM,Z)- (200)

Using (199-200) and (191-193), it follows that for all mg, m; € N,
Vi (W) € 7. (201)

We put Ky = Z and consider the following class of information functionals on

C(Q x [a,b], Z)
AN ={0s1:5€Q,t€labl}, 0::(f)=f(s,1). (202)
We conclude from (190) and (201) that the problem

(fyOa \Ij’mo,mnB(Q? Z)? Z7 AO)

reduces to
(7, F,B(Q % [a,b],Z), Z, \)

(see Section 3 of [14]). Consequently, by (189), for all n,mg,m; € N
eizet(ya y) > efzet(’ym\l]mmml)v (203)
where set € {det,ran}. Moreover, by linearity and (198),

S0y Wimgm,) = Comin (ml_r_g,mgmml_“_m) e (F, U0 204)

mo, ml) (

For all 6;; € R ((,)) € Fmgm,) We have

b
Hyo D Gty > 5z‘j900,i2j/ P15 (t)dt

(i’j)ejmovml B(sz) (’i’j)eﬂmOﬁml B(sz)
mi1—1
At max. Z(Swzj (205)
1<i<mgo
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Now we prove the lower bounds in the deterministic setting. Here we take
any wy € Z with ||wg|| =1 and set z; =wo (j =0,...,m; — 1). Using standard
results, see [29], Ch. 4.5, as well as (205), we obtain

det(‘y \11977,0 ml)
> min 20 Z Yij
fgﬂmo,mlzljlzmgoml_n (2,])€j
> gooymy min max, {j: (4,5) € £} > ¢, (206)

IC Imgmys |7 12me0ms —n 1<i<m0
provided mgoml >2n. If ro/dy > r1 + 01, we set
rto—ri—o1 0
mo = ’72nT0+(T+9—T1—91)d0—‘ , My = [nm*—(”—e—n-m)do—‘
and get from (203-204), (206), and (131)

det a : —r—o —ro,.,,—T1—01

eSS, F) = cemin(my ¢ mgOmy )
_ ro(r+e)

> cn rot(rte-ri—e1do = e

—v1

If ro/dy < 11+ 01, we put mg = (an/dﬂ, my = 1, and derive similarly
NS TF) 2 e =
which proves the lower bound in (186).
Finally we consider the randomized setting. Lemma 5 and 6 of [13] with
K = Z (Lemma 6 is formulated for K = R, but is easily seen to hold also for
K = 7) give

ran(yo’ Z

mo ml)

min EH«?@ Z gijwij

Imyg, m1,|¢|>m mi—4n (i.j)es

1
4sc
with {g;; : (1,7) € Fnym, } being independent Bernoulli random Variables with
P{e;; = —1} = P{e;; = +1} = 1/2. Using (205), we conclude for mim,; > 8n

ran
(yO? mo m1>
0001 .
> 1 min E max. E €ij %) |
m % % 0,y — ; 0
1 ICImg,mes I [>my" m1—4n 1<i<my i (i f)es
0001 .
> 1 min max E g €ij%i |- (207)
m do, . dg
1 FCImgmys |7 1>meOmi—4n 1<i<mg j: (ij)es

Now we distinguish between two cases. If pz = 2, we use the same choice z; = wj
as in the deterministic setting. Then by Khintchine’s inequality, see [24], Th.

2.b.3,
Z ijZj

(i,5)€S

>cl{j: (i,5) € £ (208)
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If p; < 2, Z must be infinite dimensional, because a finite dimensional space Z
always satisfies p; = 2. By the Maurey-Pisier Theorem (see [26], Th. 2.3), there
is a sequence (wj)?”‘:lgl C Z such that for all (@);’2&1 CR

1 mi—1 1/pz mi—1 1/pz
5 (Z |5j|pz> < < (Z |5j|pz> :

J=0 Jj=0

mi1—1

>
=0
Setting z; = w; (j =0,...,my — 1), we get

E H Z EijZj

j:(i,5)es

> LG Gy ey (209

Assuming mm, > 8n, we obtain from (207-209) for both cases

e (0, Vg m, )

mo,mi

> emy! min max |{j: (i,5) € S|P
ICImg,ma s |]|2m00m1—4n 1§i§m00

> omy TP (210)

Combining (203), (204), and (210), it follows that for m@m, > 8n

e (S F) > emy TP min (my" % mg™om ) (211)

If ro/do >r1+ 01 +1—1/pz, we define
r+o—r1—01 0
mg = ’78nTo+(T+9—T1—91)do—‘ , My = lrnro+(r+e—’“1—91)do—‘ ,

which together with (211) and (133) gives

ro(r+o+1-1/py)

e;an(y,ﬁ) Z Cn_r0+(r+g—r1—gl)d0 — Cn—vz(pz)‘

If ro/dy <r1+ 01+ 1—1/py, we set mg = (8n1/dﬂ, my; = 1, and get from (211)
and (133)

T0

NS F) Z en = en ),

which shows the lower bound in (187).

6 Special classes of functions

First let us consider the case of globally bounded functions. Here we have k = kg
and L = Ly with Ko, Ly € ]R, Ko, Ly > 0. Then
F = (G0n(Q x [a,b] X Z, Z; Ko, Lo) NG5 (Q X [a,b] x Z, Z; ko, L))
XO‘BCro (Q,2)5
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provided the constant A involved in the definition (57-59) of .# satisfies
A >0+ kKo(b—a). (212)

In other words, for globally bounded classes conditions (58) and (59) are auto-
matically fulfilled whenever (212) holds.

Next let us consider the case of linear equations and see how it fits the class
F. For kg > 0 let C™"2(Q X [a,b], Z; ky) denote the subset of all functions in
ETme(Q % |a,b] X Z, Z; ky) which do not depend on z € Z. Given kg, k1,0 > 0,
let ¢ be the set of all pairs (f,up) with ug € 0Bcrog,zy and [ : @ x[a,b]|x Z — Z
of the form

f(s,t,2) = go(s,t) + g1(s, 1)z (213)
with

g € CQ x [a,b], Z; ko) NC™"(Q X [a,b], Z; ko) (214)
g € C"Q x [a,b], Z(Z); k1) N C™"2(Q x [a,b], L(Z);k1). (215)

This means we consider the linear equation

%u(s,t) = go(s,t) + g1(s, t)u(s,t) (216)

u(s,a) = wup(s). (217)

Corollary 6.1. Letrg,r,71 € Ng, 0 < 0,01 < 1, withr+o0 > r1+01, ko, k1,0 > 0.
Then there ezist k, L : (0,4+00) — (0,400) and A > 0 such that

G C.F (218)

where 9 is defined in (213-215) and .Z in (57-59), and the statements of Theorem
5.1 hold with F replaced by 94 .

Proof. 1t is easily checked that
g C (Cg{’;g@(cg x [a,b] x Z, Z:#, L)
NG(Q x [a,b] x Z, Z; m,L)) x 0 Bero(g.z)

for suitable s, L. Thus, it remains to verify (58-59). Since f is Lipschitz with
constant r;, the solution of (216-217) exists on [a, b] and is unique. Integrating
with respect to t we get

w(s,t) = uols) + / (90(5,7) + gu(s, T)u(s, 7)) dr,

consequently, for ¢ € [a, b]
t
- Ollpign < o+ 0= abmotrn [ ul- gz dr
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which, by Gronwall’s lemma, gives
lull poxap,z) < (0 + (b— a)r)e™ .
By (12-14) we have A) (fs, uo(s)) = v(s, -), where

| pro(s,t) if t€[ty,tgr1) and 0<k<n-1,
U(S,t) - { Un(S) if += tn;

and for 0 <k <n—1,t € [ty, tp1]

pro(s,t) = up(s) + (t —tx)go(s, tx) + (t — tx)gr(s, t)ur(s) (219)
uri1(s) = uk(s) + hgo(s, &ri1) + hgi (s, Ee1) Pro(s, Epr)- (220)
Inserting (219) with ¢t = &4 into (220), we get
Urs1(s) = wur(s) + hgo(s, 1) + h(Err — te) g1 (5, Eetr) 9o (s, i)
+hg: (87§k+1)uk(3) + W1 — L)1 (57§k+1)91(37 tr)ur(s),

thus with ¢y = ko(1 + hk1), c1 = k1(1 + hkq)

||uk+1||B(Q,Z) < (L+ah) ||uk||B(Q,Z) + coh.
Using ||uo||p(g,z) < o, we obtain for 1 <k <n

k—1
”uk”B(Q,Z) < U(l + Clh)k + coh Z(l + Clh)j
=0
(U + CO/Cl)(l + Clh)n < (0’ + /‘io/lil)ecl(b’a)
< (0 + Kko/K1) o1 (14 (b—a)r1) (b—a)

IA

Together with (219) this implies
-t
pdpax | max pro(,t)lls@.2)

< (14 (b= a)ky) (o + Ko/ e IHE-am)b=a) L () _ )k,

and hence the desired result (218), which, in turn, implies the upper bound.
That the lower bounds of Theorem 5.1 also hold for ¢ follows directly from
the proof of Theorem 5.1 and the fact that ¢ contains all pairs (f,0) with

f=gq € C’O’T’Q(Q X [a,b], Z; ko) NCTO"2(Q X [a,b], Z; ko).
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Now let us motivate the choice of the smoothness for the class . in (57—
59). This is best explained when looking at the subset of those functions f
which depend only on s and ¢. Then the parameters rq,r,r1, 0, 01 describe the
smoothness of f(s,t) and we arrive for Z = R at classes analogous to those
studied in [6] (so we also refer to the discussion in Section 5 of that paper).

The smoothness we imposed with respect to z can be considered as chosen in
a ‘complementary’ way. By this we mean the following. As we showed in Section
5, the complexity only mildly depends on the smoothness in z in the sense that
increasing this smoothness does not result in a higher rate of the minimal errors.
In fact, even if f does not depend on z at all, we get the same rate. Therefore, with
the smoothness parameters rq, r, 71, 0, 01 set for s and ¢, the smoothness in z has
been chosen in such a way that it just guarantees the respective convergence rate.
(Of course, a challenging problem is to find minimal smoothness requirements in
z still ensuring the same rate. We do not pursue this aspect here.)

The class 67;,"*(Q % [a,0] X Z,Z; K, L) consists of functions with a certain
type of dominating mixed smoothness. We have chosen % to be given by an
intersection of two such classes, because this way we can also include isotropic
smoothness and certain anisotropic analogues thereof. Let us look at these special
cases in some more detail. For the subsequent discussion we assume, for the sake
of simplicity, that Z is of type 2, which includes, in particular, the case of finite
systems of scalar equations Z = RY.

First we consider the case r = 71, o = p;. Then .% is the set of all

(fiwo) € E(Q X [a,b] X Z, Z; k, L) X 0Becro(g,2)

Lip
satisfying (58) and, if » = o = 0, (59). Thus, the involved functions f have
dominating mixed smoothness. From Theorem 5.1 we obtain

Corollary 6.2. Let ro,7 € No, 0 < o < 1, r =1y, 0 = 01, assume that (185)
holds and that Z is of type 2. Then

AN S F) Xig M min(r+2. 5)
e;an(y7 ﬁ) log n min<r+g+%’ ‘TTg).

Hence, if ro/dy < r+p, the rates are the same. If rq/dy > r+ o, the best rate of
randomized algorithms is superior to that of deterministic algorithms. If ro/dy >
r+o0+ %, the best randomized algorithms outperform the best deterministic ones
by an order of n='/2. This is particularly important if, e.g., 7 = 0 and o is small.
Then the deterministic rate n=¢ is slow (for p = 0, there is no convergence rate
at all), while in the randomized setting we still have at least n~'/2.

Next we assume r; = p; = 0, which means that .% is the set of

Lip

(fru) € (0°(Q x [a,V) x 2,25k, L)

NG "(Q % [a,b] x Z, Z; H,L)> X 0 Bcroq,z) (221)

Lip
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fulfilling (58) and, if r = o = 0, (59), so that here the functions f have smoothness
in s and ¢ separately. In this case Theorem 5.1 yields

Corollary 6.3. Let ro,r € Ng, 0 < 0o <1, r = g1 =0, suppose (185) holds and
Z is of type 2. Then

e?f’%y’ ‘g\) xlog n-"
e;an<‘5ﬂ7 y) log n—vg’
where
0 Zf o = 0
v = a ‘ (222)
% (r+ o) otherwise
o
. (r+o+i) if >1
Uy = g+r+g 2 dy = 2 (223>
T . e 1
% if % <3

Except for the trivial case ry = 0, the randomized setting is always superior
to the deterministic one, although the maximum of improvement n~/? is only
reached if r = o = 0 and r9/dy > 1/2 (this case, in fact, has already been
considered above).

Next we keep the restriction r; = p; = 0 and assume also o = 0. In this case
we want to identify certain subclasses of .%. Let 75 € Ny and let €romm2l(Q x
la,b] x Z, Z; k) be the space of continuous functions f : @ X [a,b] X Z — Z having
for all o = (v, a1, an) € N§ with

ay o«
222 (224)
To r T2
(we interpret § = 0 and 7 = oo if 7 > 0) continuous partial derivatives
asao‘f:laji% such that for R >0, s € Q, t € [a,b], z € RBy
ool f(s,t, =
Ha ao];sma . < w(R).
S N Zag o (R90,2,2)

If 1o = ro = r, then this is just isotropic C"-smoothness. Furthermore, if ro >
ro, we let CKL[ZE’T“](Q X [a,b] x Z, Z;k, L) be the subset consisting of those f €
%[TO’T’”}(Q X [a,b] x Z,Z; k) which satisfy the Lipschitz conditions

Lip
H 8'0“f(5,t, 21) B 3|a|f(s, t,29)

050 z2 0840 z%2

< L(R)|z1 — =]

gao,ocg (RdO7Z7Z)

for ag+ e <rg, R>0,s € Q,t € [a,b], 21,22 € RBz. Finally, we let J# be the
set of all
(f,uo) € %”[TO’T’TQ](Q X [a,b] X Z,Z;k, L) X 0Bcr(g,z)

Lip

46



satisfying (58) and, if r = 0, (59). Considering the class .# with r; = 0 =0 =0
and taking into account (221), it follows that for all ro > max(rg, r)

HCF. (225)

Corollary 6.4. Let ro,7, 19 € Ny, 79 > max(ro,r), assume that (185) holds and
that Z is of type 2. Then for any .# with 7 C .M C F

el M) Siog N
(S M) =g M2,

where vy and vy are as in (222-223), with o = 0. In particular, if ro =r >0, vy
and vy take the form

7’+% : T 1
r f =3
vy = vy =4 Pt do =2 (226)
do + 1’ Ty oL
do o <2

Proof. The upper bounds follow from (225) and Corollary 6.3. Let us show the
lower bounds. We use the notation from the proof of Theorem 5.1. There is a
constant ¢y > 0 such that for all my,m; € N, ¢p € W0

mo,mi1

’W”C[Towzl (Qx[a,b]xZ,2)

Qo Qg
< comax{mg‘om?l ag, a1 ENy, — 4+ — < 1}
To r
20 = Qo |
= comax{(mgo) "0 (m’{) T ag,ap €Ny, —+ — < 1}
To r
< ¢omax (mg’, my).

Setting

U, my = min (/10, (b— a)_l)\) gt min(mgy "™, m;") \Ifglo,mla

it follows that

\Ilmoﬂ”fll g Cgl[ggr’m](@ X [(I, b] X Z7 Za K, L)
Vo < (b— a>71)\BC(Q><[a,b],Z)

and therefore, by (192) and (193), for all my, m; € N
Vi (Wingmi) © HC M,

where Vj is defined in (188). Now the same argument as used in the proof of
Theorem 5.1 (with r; = p; = o = 0) gives the lower bounds.
O]
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As we already discussed above in regard to %, also here the rate does not
depend on the smoothness 75 of f in the variable z. We observe that by (226), for
ro = r and in particular in the isotropic case rq = ro = r, the maximal speedup
of randomized algorithms over deterministic ones is n~/*, reached for dy = 1,
r>1.

Finite systems of d scalar ODEs are included in our analysis by setting Z = (4.
Letting .7, stand for .# with Z = (5(N) and denoting the classes .Z for Z = (3
by Z#, (all with the same dimension of the parameter space dy and with the same
constants k, L, o, \), it is easily shown that .%#; can be embedded into Z, in a
uniform way. This shows, in particular, that the error estimates of the algorithm,
see Corollary 4.3, hold with constants which are independent of the dimension d
of the system. Taking into account that an %-valued information functional is
equivalent to d scalar-valued information functionals, it follows that the family
(Z4)den is polynomially tractable in the randomized setting if o > 0 and in the
deterministic setting if ry > 0 and » + ¢ > 0. We refer to [28] for the notion of
tractability and more on this direction of research.

In the present paper we did not strive for the best estimates in terms of the
involved powers of logarithmic factors, as already made clear in Remark 4.4, since
for general Banach spaces even the exponent is only known up to an arbitrary
small € > 0. We also left out the question of ODEs defined in bounded domains,
since in general Banach spaces standard localization methods do not work due
to the non-existence of smooth bump functions, see [9]. Both topics — bounded
domains and sharp asymptotic estimates — will be covered in a subsequent paper
[7] for the case of Z being a Hilbert space, including this way finite scalar systems.
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