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Abstract

We consider initial value problems for parameter dependent ordinary
differential equations with values in a Banach space and study their com-
plexity both in the deterministic and randomized setting, for input data
from various smoothness classes. We develop multilevel algorithms, inves-
tigate the convergence of their deterministic and stochastic versions, and
prove lower bounds.

1 Introduction and preliminaries

The complexity of initial value problems for ordinary differential equations (ODEs)
was studied in [19, 20, 21, 16, 4] for scalar systems and in [15] for the Banach
space valued case. In this paper we consider initial value problems for parameter
dependent ODEs with values in a Banach space. We study the complexity in
the deterministic and randomized setting for various classes of smoothness of the
input functions. These classes are closely related to those considered in [6] and
include cases of isotropic and of dominating mixed smoothness.

We develop a randomized multilevel algorithm and establish its convergence
rate. The deterministic version of it, which is obtained from the randomized
one by fixing the random parameters in an arbitrary way, is also studied. The
algorithmic approach is a nonlinear analogue of the approximation in [5], based
on the multilevel methods of [11, 17]. Furthermore, our analysis uses the Banach
space valued generalizations [15] of the scalar results in [16, 4].

We prove lower bounds on the complexity. The algorithm turns out to be
of optimal order (up to logarithmic factors) in the deterministic setting. In the
randomized setting, for general Banach spaces, there remains an arbitrarily small
gap in the exponent. For special spaces like the Lp spaces the convergence rate of
the algorithm and the lower bounds are matching also in the randomized setting
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(again up to some logarithmic factors). This way we obtain almost sharp esti-
mates of the complexity. We also compare the optimal rates of the deterministic
and randomized setting, this way assessing the speedup randomization can bring
over deterministic methods.

Studying equations in Banach spaces means including finite and infinite sys-
tems of scalar ODEs and gives the possibility of considering various norms which
are non-equivalent for the case of infinite systems. The Banach space approach is
also of interest from the point of view of tractability of high-dimensional problems
[28], since the Banach space results imply convergence estimates for finite scalar
systems with constants independent of the dimension, see also the comments in
Section 6.

Regularity and approximation properties of the solution of parameter depend-
ent initial value problems for ODEs have recently been considered in [10], however,
with linear dependence on the parameters and an infinite dimensional parameter
space. Complexity of parameter dependent problems was previously studied only
for parametric definite integration [17, 12, 31, 5] and for parametric indefinite
integration [5]. Both problems are linear, so that in the present paper for the
first time the complexity of a nonlinear parametric problem is analyzed.

The paper is organized as follows. In Section 2 we consider Banach space
valued ODEs and develop a multilevel approach. The parametric problem is
formulated in Section 3 and we show how it fits the Banach space scheme for
a single equation of Section 2. In Section 4 the algorithm for the parametric
problem is described and convergence rates are derived. Section 5 contains lower
bounds and the complexity is established. Finally, in Section 6 we discuss the
considered classes and related ones, study special cases of the obtained results,
and provide comparisons between deterministic and randomized setting.

Background on Banach space valued differential calculus and ODEs can be
found in [1]. For further reading on ODEs in Banach spaces we refer to the
monographs [3, 25, 32, 22, 8]. Basic references on information-based complexity
theory are [29, 27] and, in particular for the topic of tractability, [28].

Let N = {1, 2, . . . } and N0 = {0, 1, 2, . . . }. We introduce some notation and
concepts from Banach space theory needed in the sequel. For a Banach space
X the closed unit ball is denoted by BX , the open unit ball by B0

X , the identity
mapping on X by IX , and the dual space by X∗. Given k ∈ N, Banach spaces Xi

(i = 1, . . . , k) and Y , we let L (X1, . . . , Xk, Y ) be the space of bounded multilinear
mappings T : X1 × · · · ×Xk → Y endowed with the canonical norm

‖T‖L (X1,...Xk,Y ) = sup
x1∈BX1

,...,xk∈BXk
‖T (x1, . . . , xk)‖.

If X1 = · · · = Xk = X, we write Lk(X, Y ). Similarly, if k = k1 + k2 with
k1, k2 ≥ 0, X1 = · · · = Xk1 = X, Xk1+1 = · · · = Xk1+k2 = Z, we use the notation
Lk1,k2(X,Z, Y ). For convenience we extend the notation to k = 0 by setting
L0(X, Y ) = L0,0(X,Z, Y ) = Y . If k = 1, L1(X, Y ) is the space of bounded
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linear operators, for which we write L (X, Y ). If Y = X, we write L (X) instead
of L (X,X).

If M is a nonempty set, we let B(M,X) be the space of all X-valued, bounded
on M functions, equipped with the supremum norm

‖g‖B(M,X) = sup
t∈M
‖g(t)‖.

If X = R, we write B(M).
Given 1 ≤ p ≤ 2, a Banach space X is said to be of (Rademacher) type p, if

there is a constant c > 0 such that for all n ∈ N and x1, . . . , xn ∈ X

E
∥∥∥ n∑
i=1

εixi

∥∥∥p ≤ cp
n∑
k=1

‖xi‖p, (1)

where (εi)
n
i=1 is a sequence of independent Bernoulli random variables with P{εi =

−1} = P{εi = +1} = 1/2 (we refer to [26, 23] for this notion and related
facts). The type p constant τp(X) of X is the smallest constant c > 0 satisfying
(1). If there is no such c > 0, we set τp(X) = ∞. The space Lp1(M,µ) with
(M,µ) an arbitrary measure space and p1 <∞ is of type p with p = min(p1, 2).
Furthermore, there is a constant c > 0 such that τ2(`n∞) ≤ c(log(n+ 1))1/2 for all
n ∈ N (see also Lemma 4.6 below).

Throughout the paper the same symbol c, c1, c2, . . . may denote different con-
stants, even in a sequence of relations. The function log always means log2. For
nonnegative reals (an)n∈N and (bn)n∈N we write an � bn if there are constants
c > 0 and n0 ∈ N such that for all n ≥ n0, an ≤ cbn. Furthermore, an � bn
means that an � bn and bn � an. Finally, an �log bn iff there are constants c > 0,
n0 ∈ N, and θ ∈ R such that for all n ≥ n0, an ≤ cbn(log(n+ 1))θ and an �log bn
iff an �log bn and bn �log an.

2 Banach space valued ODEs

Let X and Y be Banach spaces over the reals. This assumption is made because
below we consider only real differentiation. Complex spaces can be included by
simply considering them as spaces over the reals. Let −∞ < a < b < +∞,
r ∈ N0, 0 ≤ % ≤ 1, and let κ, L : (0,+∞)→ (0,+∞) be any functions. We define
the following class

Cr,%([a, b]×X, Y ;κ) of continuous functions f : [a, b]×X → Y

having for α = (α1, α2) ∈ N2
0 with |α| = α1 +α2 ≤ r continuous partial (Fréchet-)

derivatives
∂|α|f(t, x)

∂tα1∂xα2
∈ Lα2(X, Y ),
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such that for all R > 0, t, t1, t2 ∈ [a, b], x, y ∈ RBX , |α| ≤ r∥∥∥∥∂|α|f(t, x)

∂tα1∂xα2

∥∥∥∥
Lα2 (X,Y )

≤ κ(R), (2)

and, for |α| = r,∥∥∥∥∂|α|f(t1, x)

∂tα1∂xα2
− ∂|α|f(t2, y)

∂tα1∂xα2

∥∥∥∥
Lα2 (X,Y )

≤ κ(R)(|t1 − t2|% + ‖x− y‖%). (3)

Moreover, let Cr,%Lip([a, b] ×X, Y ;κ, L) be the class of all f ∈ Cr,%([a, b] ×X, Y ;κ)
such that for R > 0, t ∈ [a, b], x, y ∈ RBX

‖f(t, x)− f(t, y)‖ ≤ L(R)‖x− y‖. (4)

So the classes introduced above have smoothness (and the Lipschitz property)
bounded on bounded sets. If X is finite dimensional, this means local smoothness
and local Lipschitz property.

We consider initial value problems for ODEs with values in X

u′(t) = f(t, u(t)) (t ∈ [a, b]), u(a) = u0, (5)

with f ∈ Cr,%Lip([a, b]×X,X;κ, L) and u0 ∈ X. A function u : [a, b]→ X is called
a solution, if u is continuously differentiable and (5) is satisfied.

Next we introduce the algorithm developed and studied in [15] (and previously,
for the scalar case, in [4]). Let m ∈ N0, n ∈ N, let tk = a+kh (k = 0, 1, . . . , n) be
the uniform grid on [a, b] of meshsize h = (b−a)/n. Furthermore, for 0 ≤ k ≤ n−1
and 1 ≤ j ≤ m let Pk,j be the operator of Lagrange interpolation of degree j on
the equidistant grid tk,j,i = tk + ih/j (i = 0, . . . , j) on [tk, tk+1]. Let ξ1, . . . , ξn be
independent random variables on some probability space (Ω,Σ,P) such that ξk
is uniformly distributed on [tk−1, tk] (k = 1, . . . , n). Since we will also consider
ξk(ω) for fixed ω ∈ Ω, we assume (without loss of generality) that

{(ξ1(ω), . . . , ξn(ω)) : ω ∈ Ω} = [t0, t1]× · · · × [tn−1, tn]. (6)

Fix f ∈ Cr,%Lip([a, b] × X,X;κ, L) and u0 ∈ X, and define (uk)
n
k=1 ⊂ X and

X-valued polynomials pk,j(t) for k = 0, . . . , n − 1, j = 0, . . . ,m by induction as
follows. Assume that 0 ≤ k ≤ n − 1 and that uk is already defined. Then we
define pk,0 by

pk,0(t) = uk + f(tk, uk)(t− tk) (t ∈ [tk, tk+1]). (7)

Now suppose m ≥ 1, 0 ≤ j < m, and pk,j is already defined. We define pk,j+1 by

pk,j+1(t) = uk +

∫ t

tk

(Pk,j+1qk,j) (τ)dτ, (8)
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where

qk,j = (f(tk,j+1,i, pk,j(tk,j+1,i)))
j+1
i=0 . (9)

Finally, we put

uk+1 = pk,m(tk+1) + h
(
f(ξk+1, pk,m(ξk+1))− p′k,m(ξk+1)

)
. (10)

The result of the algorithm, the approximation v ∈ B([a, b], X) to the solution u
of (5), is now defined by

v(t) =

{
pk,m(t) if t ∈ [tk, tk+1) and 0 ≤ k ≤ n− 1,
un if t = tn.

(11)

Let
Amn,ω : Cr,%Lip([a, b]×X,X;κ, L)×X → B([a, b], X)

denote the resulting mapping, for ω ∈ Ω fixed, that is,

Amn,ω(f, u0) = v, (12)

and let Amn denote the family of mappings Amn = (Amn,ω)ω∈Ω. We write Amn (f, u0)
for the random variable (Amn,ω(f, u0))ω∈Ω. Observe that for m = 0 we have

pk,0(t) = uk + f(tk, uk)(t− tk) (t ∈ [tk, tk+1], 0 ≤ k ≤ n− 1), (13)

uk+1 = uk + hf(ξk+1, pk,0(ξk+1)) (0 ≤ k ≤ n− 1). (14)

Concerning the definition of Amn,ω, we note that due to condition (6), fixing any
ω ∈ Ω is the same as fixing any values of ξk ∈ [tk−1, tk] (k = 1, . . . , n). This way
we obtain a deterministic algorithm, the ξk being fixed algorithm parameters.

Given also σ, λ > 0, we let F r,%([a, b]×X,X;κ, L, σ, λ) be the class of all pairs
(f, u0) with f ∈ Cr,%Lip([a, b] × X,X;κ, L), u0 ∈ σBX , such that the initial value
problem (5) has a solution u (which is unique, due to assumption (4)) satisfying

‖u‖B([a,b],X) ≤ λ. (15)

If r = % = 0, we require, in addition, that (f, u0) is such that for all n ∈ N, ω ∈ Ω

‖A0
n,ω(f, u0)‖B([a,b],X) ≤ λ. (16)

The solution operator

S : F r,%([a, b]×X,X;κ, L, σ, λ)→ B([a, b], X)

is defined for (f, u0) ∈ F r,%([a, b] × X,X;κ, L, σ, λ) by S(f, u0) = u, where u is
the solution of the initial value problem (5).
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Proposition 2.1. Let r ∈ N0, 0 ≤ % ≤ 1, κ, L : (0,+∞) → (0,+∞), σ, λ > 0,
1 ≤ p ≤ 2, and let m ∈ N0 if r + % > 0 and m = 0 if r = % = 0. Then there are
constants c1, c2 > 0 and ν0 ∈ N such that for all Banach spaces X and all n ≥ ν0

sup
(f,u0)∈Fr,%([a,b]×X,X;κ,L,σ,λ)

‖S(f, u0)− Amn,ω(f, u0)‖B([a,b],X)

≤ c1n
−min(r+%,m+1) (ω ∈ Ω) (17)

and

sup
(f,u0)∈Fr,%([a,b]×X,X;κ,L,σ,λ)

(
E ‖S(f, u0)− Amn,ω(f, u0)‖pB([a,b],X)

)1/p

≤ c2τp(X)n−min(r+%,m+1)−1+1/p. (18)

Proof. We put

U = [a, b]× (λ+ 1)B0
X , U0 = σBX , V = [a, b]× λBX .

Let (f, u0) ∈ F r,%([a, b] ×X,X;κ, L, σ, λ). First we consider the case r + % > 0.
By (15) we have, in the notation of [15],

(f |U , u0) ∈ F r,%(U, κ(λ+ 1), L(λ+ 1), U0, V ).

Since λBX + 1
2
BX ⊂ (λ + 1)B0

X , Theorem 3.3 of [15] gives (17–18). Now let
r = % = 0 and put u = S(f, u0). Then for t ∈ [tk, tk+1]

u(tk) + κ(λ+ 1)(t− tk)BX ⊆ λBX + κ(λ+ 1)
b− a
n

BX ⊆ (λ+ 1)B0
X

whenever n ≥ ν0 := bκ(λ+ 1)(b− a)c + 1. Taking into account (15–16), we see
that, in the notation of [15],

(f |U , u0) ∈H 0,0(U, κ(λ+ 1), L(λ+ 1), U0, V, 0, n) (n ≥ ν0).

Therefore (17–18) follow for n ≥ ν0 from Proposition 3.4 of [15].

In the sequel we need the following result.

Lemma 2.2. Let Z and Z1 be Banach spaces, f ∈ C0,0
Lip([a, b] × Z,Z;κ, L), and

T ∈ L (Z,Z1). Assume that there are κ1, L1 : (0,+∞)→ (0,+∞) and a function
g ∈ C0,0

Lip([a, b]× Z1, Z1;κ1, L1) such that for all t ∈ [a, b], z ∈ Z

Tf(t, z) = g(t, T z). (19)

Then for all u0 ∈ Z the following hold. For m ∈ N0, n ∈ N, ω ∈ Ω

TAmn,ω(f, u0) = Amn,ω(g, Tu0). (20)

Moreover, if u is a solution of (5), then Tu is a solution of the ODE in Z1

w′(t) = g(t, w(t)) (t ∈ [a, b]), w(a) = Tu0. (21)
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Proof. Applying T to (5), we get

(Tu(t))′ = Tu′(t) = Tf(t, u(t)) = g(t, Tu(t)) (t ∈ [a, b])

Tu(a) = Tu0.

Now the second statement follows from uniqueness of the solution of (21).
Let uk, pk,j, and qk,j be the resulting sequences (7–10), when applying Amn,ω

to (f, u0). Furthermore, put ũ0 = Tu0 and let ũk, p̃k,j, and q̃k,j be the respective
functions from applying Amn,ω to (g, ũ0). We show that for 0 ≤ k ≤ n

Tuk = ũk (22)

and for 0 ≤ k ≤ n− 1

Tpk,j = p̃k,j (0 ≤ j ≤ m). (23)

First we prove that given k with 0 ≤ k ≤ n − 1, (22) implies (23). So assume
that (22) holds. We show (23) by induction over j. Let j = 0. By (19) and (22),

Tf(tk, uk) = g(tk, Tuk) = g(tk, ũk),

therefore

Tpk,0(t) = Tuk + Tf(tk, uk)(t− tk) = ũk + g(tk, ũk)(t− tk) = p̃k,0(t).

Now we assume that (23) holds for some j with 0 ≤ j < m. Then

Tpk,j(tk,j+1,i) = p̃k,j(tk,j+1,i) (i = 0, . . . , j + 1).

It follows that

Tf(tk,j+1,i, pk,j(tk,j+1,i)) = g(tk,j+1,i, p̃k,j(tk,j+1,i))

and consequently

Tpk,j+1(t) = Tuk + T

∫ t

tk

(Pk,j+1qk,j+1)(τ)dτ

= ũk +

∫ t

tk

(Pk,j+1q̃k,j+1)(τ)dτ = p̃k,j+1(t).

This completes the induction over j and the proof that (22) implies (23).
Next we show (22) by induction over k. For k = 0 it holds by definition. Now

suppose (22) and thus (23) hold for some k with 0 ≤ k ≤ n− 1. It follows that

Tuk+1 = Tpk,m(tk+1) + h
(
Tf(ξk+1, pk,m(ξk+1))− Tp′k,m(ξk+1)

)
= p̃k,m(tk+1) + h

(
g(ξk+1, p̃k,m(ξk+1))− p̃′k,m(ξk+1)

)
= ũk+1.

This shows (22) for k + 1, completes the induction over k, and proves (22–23).
Now (20) follows from (22–23) and (11–12).
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Now we develop a multilevel procedure. Assume that a Banach space Y is
continuously embedded into the Banach space X, and let J be the embedding
map. We shall identify elements of Y with their images in X. Let r, r1 ∈ N0,
0 ≤ %, %1 ≤ 1, κ, L : (0,+∞)→ (0,+∞), σ, λ > 0, and consider the set

K = F r,%([a, b]×X,X;κ, L, σ, λ) ∩ F r1,%1([a, b]× Y, Y ;κ, L, σ, λ), (24)

which is the set of all (f, u0) ∈ F r,%([a, b] × X,X;κ, L, σ, λ) such that f maps
[a, b] × Y to Y and, if f is considered as such a mapping, (f, u0) belongs to
F r1,%1([a, b]× Y, Y ;κ, L, σ, λ).

Observe that the solution operator S is correctly defined also on K, since
the respective operators on F r,%([a, b] × X,X;κ, L, σ, λ) and F r1,%1([a, b] × Y, Y ;
κ, L, σ, λ) coincide on the intersection. This follows from Lemma 2.2 with Z = Y ,
Z1 = X, T = J , and g = f .

Let (Pl)
∞
l=0 ⊂ L (X) and fix any l0, l1 ∈ N0, l0 ≤ l1, and (nl)

l1
l=l0
⊂ N. For

(f, u0) ∈ K and ω ∈ Ω we define an approximation Aω(f, u0) to u = S(f, u0) in
the space B([a, b], X) as follows

Aω(f, u0) = Pl0A
r
nl0 ,ω

(f, u0) +

l1∑
l=l0+1

(Pl − Pl−1)Ar1nl,ω(f, u0). (25)

(Here we assume that the underlying probability space (Ω,Σ,P) is such that all
random variables required on the levels l0, . . . , l1 are defined on it.)

We assume that there is a constant γ0 > 0 such that for all l ∈ N0

‖Pl‖L (X) ≤ γ0. (26)

Furthermore, we assume the existence of a family of operators (Tl)
∞
l=0 ⊂ L (X)

with the following properties. There are constants γ1, γ2 > 0 such that for l ∈ N0

‖Tl‖L (X) ≤ γ1, (27)

Tl maps Y to Y ,
‖Tl‖L (Y ) ≤ γ2, (28)

and
PkTl = Pk (k ≤ l). (29)

Finally, let K0 ⊆ K be a subset with the following property: If f is such that
there exists a u0 with (f, u0) ∈ K0, then

Tlf(t, x) = Tlf(t, Tlx) (t ∈ [a, b], x ∈ X, l ∈ N0). (30)

We put
Xl = clX(Tl(X)), Yl = clY (Tl(Y )) (l ∈ N0),

where cl denotes the closure in the respective space.
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Note that the Tl do not enter the algorithm definition, they are needed for the
error analysis. Furthermore, (27–30) hold, in particular, for K0 = K and Tl ≡ IX .
In this case the error estimate (32) in the randomized setting of Proposition
2.3 below requires some type assumption on the spaces X and Y . However, in
Sections 3 and 4 we shall consider spaces X and Y which have no nontrivial type,
while certain finite dimensional subspaces related to the approximation do have
type constants with nontrivial estimates. Therefore we will also consider other
choices of K0 and Tl, see Section 4.

Proposition 2.3. Let r, r1 ∈ N0, 0 ≤ %, %1 ≤ 1, κ, L : (0,+∞) → (0,+∞),
σ, λ, γ0−2 > 0, and 1 ≤ p ≤ 2. Then there are constants c1, c2 > 0 and ν0 ∈ N
such that the following holds.

Given Banach spaces X, Y with Y continuously embedded into X, sequences
(Pl)

∞
l=0, (Tl)

∞
l=0 ⊂ L (X) satisfying (26–29), let K be defined by (24), and let K0 ⊆

K be such that (30) is fulfilled. Then for all l0, l1 ∈ N0 with l0 ≤ l1 and (nl)
l1
l=l0
⊂ N

with nl ≥ ν0 (l0 < l ≤ l1) the so-defined algorithm (Aω) satisfies

sup
(f,u0)∈K0

‖S(f, u0)− Aω(f, u0)‖B([a,b],X)

≤ c1‖J − Pl1J‖L (Y,X) + c1n
−r−%
l0

+c1

l1∑
l=l0+1

‖(Pl − Pl−1)J‖L (Y,X)n
−r1−%1
l (ω ∈ Ω) (31)

and, for any l∗ ∈ N0 with l0 ≤ l∗ ≤ l1

sup
(f,u0)∈K0

(
E ‖S(f, u0)− Aω(f, u0)‖pB([a,b],X)

)1/p

≤ c2‖J − Pl1J‖L (Y,X) + c2τp(Xl0)n
−r−%−1+1/p
l0

+c2

l∗∑
l=l0+1

τp(Yl)‖(Pl − Pl−1)J‖L (Y,X)n
−r1−%1−1+1/p
l

+c2

l1∑
l=l∗+1

‖(Pl − Pl−1)J‖L (Y,X)n
−r1−%1
l . (32)

Remark 2.4. Note that the natural case of estimate (32) would be l∗ = l1, and
it is this case which we use in this paper. However, as in [6], the more general
approach will be used in [7] to determine sharp rates, including precise powers of
logarithms.

Proof. Let (f, u0) ∈ K0. Then by (24) and (15)

‖S(f, u0)‖B([a,b],Y ) ≤ λ.
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It follows that

‖S(f, u0)− Pl1S(f, u0)‖B([a,b],X) ≤ λ‖J − Pl1J‖L (Y,X). (33)

We have by (27) and (28)

Tl0f ∈ Cr,%Lip([a, b]×Xl0 , Xl0 ; γ1κ, γ1L) (34)

Tlf ∈ Cr1,%1Lip ([a, b]× Yl, Yl; γ2κ, γ2L) (l0 < l ≤ l1), (35)

and therefore, using (30) and Lemma 2.2 with g = Tlf ,

TlS(f, u0) = S(Tlf, Tlu0) (l0 ≤ l ≤ l1) (36)

Tl0A
r
nl0 ,ω

(f, u0) = Arnl0 ,ω
(Tl0f, Tl0u0) (ω ∈ Ω) (37)

TlA
r1
nl,ω

(f, u0) = Ar1nl,ω(Tlf, Tlu0) (ω ∈ Ω, l0 < l ≤ l1). (38)

This together with (27–28) and (34–35) implies

(Tl0f, Tl0u0) ∈ F r,%([a, b]×Xl0 , Xl0 ; γ1κ, γ1L, γ1σ, γ1λ) (39)

(Tlf, Tlu0) ∈ F r1,%1([a, b]× Yl, Yl; γ2κ, γ2L, γ2σ, γ2λ) (l0 < l ≤ l1). (40)

By (25),

‖S(f, u0)− Aω(f, u0)‖B([a,b],X)

≤ ‖S(f, u0)− Pl1S(f, u0)‖B([a,b],X)

+ ‖Pl0S(f, u0)− Pl0Arnl0 ,ω(f, u0)‖B([a,b],X)

+

l1∑
l=l0+1

‖(Pl − Pl−1)(S(f, u0)− Ar1nl,ω(f, u0))‖B([a,b],X). (41)

Furthermore, by (36), (37), and (26),

‖Pl0S(f, u0)− Pl0Arnl0 ,ω(f, u0)‖B([a,b],X)

= ‖Pl0Tl0S(f, u0)− Pl0Tl0Arnl0 ,ω(f, u0)‖B([a,b],X)

= ‖Pl0S(Tl0f, Tl0u0)− Pl0Arnl0 ,ω(Tl0f, Tl0u0)‖B([a,b],X)

≤ γ0‖S(Tl0f, Tl0u0)− Arnl0 ,ω(Tl0f, Tl0u0)‖B([a,b],Xl0 ) (42)

and similarly, by (36) and (38)

‖(Pl − Pl−1)(S(f, u0)− Ar1nl,ω(f, u0))‖B([a,b],X)

= ‖(Pl − Pl−1)Tl(S(f, u0)− Ar1nl,ω(f, u0))‖B([a,b],X)

= ‖(Pl − Pl−1)(S(Tlf, Tlu0)− Ar1nl,ω(Tlf, Tlu0))‖B([a,b],X)

≤ ‖(Pl − Pl−1)J‖L (Y,X)‖S(Tlf, Tlu0)− Ar1nl,ω(Tlf, Tlu0)‖B([a,b],Yl). (43)
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By (39), (40), and Proposition 2.1, for all ω ∈ Ω and (nl)
l1
l=l0
⊂ N with nl ≥ ν0

(l0 ≤ l ≤ l1)

‖S(Tl0f, Tl0u0)− Arnl0 ,ω(Tl0f, Tl0u0)‖B([a,b],Xl0 ) ≤ cn−r−%l0
(44)

‖S(Tlf, Tlu0)− Ar1nl,ω(Tlf, Tlu0)‖B([a,b],Yl) ≤ cn−r1−%1l (45)

and (
E ‖S(Tl0f, Tl0u0)− Arnl0 ,ω(Tl0f, Tl0u0)‖pB([a,b],Xl0 )

)1/p

≤ cτp(Xl0)n
−r−%−1+1/p
l0

(46)(
E ‖S(Tlf, Tlu0)− Ar1nl,ω(Tlf, Tlu0)‖pB([a,b],Yl)

)1/p

≤ cτp(Yl)n
−r1−%1−1+1/p
l . (47)

Combining (33) and (41–45) yields (31). Relation (32) follows in a similar way
from (33), (41–43), and (45–47).

3 The parametric problem as a Banach space

valued ODE

Let d0 ∈ N, Q = [0, 1]d0 . To keep notation consistent, instead of considering
derivatives with respect to single components of s ∈ Rd0 , we consider derivatives
with respect to the vector s, in the sense of calculus on vector spaces as in the
previous section. So below df

ds
is the Jacobian, d

2f
ds2

the Hessian, etc. The space Rd0

is equipped with the Euclidean norm. For r ∈ N0 and Z a Banach space we let
Cr(Q,Z) be the space of Z-valued r-times continuously differentiable functions
on Q, endowed with the norm

‖f‖Cr(Q,Z) = max
0≤j≤r

sup
s∈Q

∥∥∥∥djf(s)

dsj

∥∥∥∥
Lj(Rd0 ,Z)

.

Note that for r ≥ 1 this is not the standard norm on Cr(Q,Z) (given by the
maximum of the supremum-norms of the partial derivatives with respect to the
components of s), but it is equivalent, with a constant depending only on d0 and
r. We use the notation Cr(Q) if Z = R. Furthermore, C0(Q,Z) is understood to
be the space of continuous functions on Q, for which we write C(Q,Z) and C(Q)
if Z = R.

Given functions κ, L : (0,+∞)→ (0,+∞), r0, r ∈ N0, 0 ≤ % ≤ 1, and Banach
spaces Z,Z1, we define the following class

C r0,r,%(Q× [a, b]× Z,Z1;κ) of continuous functions f : Q× [a, b]× Z → Z1
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having for α = (α0, α1, α2) ∈ N3
0 with α0 ≤ r0, α1 ≤ r, and α0 + α1 + α2 ≤ r0 + r

continuous partial derivatives

∂|α|f(s, t, z)

∂sα0∂tα1∂zα2
∈ Lα0,α2(Rd0 , Z, Z1)

satisfying for R > 0, s ∈ Q, t ∈ [a, b], z ∈ RBZ∥∥∥∥ ∂|α|f(s, t, z)

∂sα0∂tα1∂zα2

∥∥∥∥
Lα0,α2 (Rd0 ,Z,Z1)

≤ κ(R) (48)

and for s ∈ Q, t1, t2 ∈ [a, b], z1, z2 ∈ RBZ∥∥∥∥∂|α|f(s, t1, z1)

∂sα0∂tα1∂zα2
− ∂|α|f(s, t2, z2)

∂sα0∂tα1∂zα2

∥∥∥∥
Lα0,α2 (Rd0 ,Z,Z1)

≤ κ(R)|t1 − t2|% + κ(R)‖z1 − z2‖%. (49)

Moreover, we let C r0,r,%
Lip (Q× [a, b]×Z,Z1;κ, L) be the class of all f ∈ C r0,r,%(Q×

[a, b] × Z,Z1;κ) satisfying for α = (α0, 0, α2) with α0 + α2 ≤ r0, R > 0, s ∈ Q,
t ∈ [a, b], z1, z2 ∈ RBZ∥∥∥∥∂|α|f(s, t, z1)

∂sα0∂zα2
− ∂|α|f(s, t, z2)

∂sα0∂zα2

∥∥∥∥
Lα0,α2 (Rd0 ,Z,Z1)

≤ L(R)‖z1 − z2‖. (50)

Clearly, if r′0, r
′ ∈ N0 are such that r′0 ≤ r0, r′ ≤ r, then

C r0,r,%(Q× [a, b]× Z,Z1;κ) ⊆ C r′0,r
′,%(Q× [a, b]× Z,Z1;κ) (51)

C r0,r,%
Lip (Q× [a, b]× Z,Z1;κ, L) ⊆ C

r′0,r
′,%

Lip (Q× [a, b]× Z,Z1;κ, L). (52)

Furthermore, if %′ ≤ %, then

C r0,r,%
Lip (Q× [a, b]× Z,Z1;κ, L) ⊆ C r0,r,%′

Lip (Q× [a, b]× Z,Z1; 2κ, L), (53)

where the factor 2 comes from the case max(|t1 − t2|, ‖z1 − z2‖) > 1, in which
(48) with constant κ trivially implies (49) with constant 2κ. Integration yields

C r0,r+1,0
Lip (Q× [a, b]× Z,Z1;κ, L) ⊆ C r0,r,1

Lip (Q× [a, b]× Z,Z1;κ, L). (54)

Finally note that it would suffice to require (49) and (50) for certain subsets of
the sets of multiindices α to obtain (up to constants) the same classes – we omit
the details, because the definition given above is more convenient for us.

The classes above were introduced for two Banach spaces Z,Z1. Some of the
lemmas below will be formulated in this general form, for technical convenience.
However, for the formulation of the problem and later for the main results we
have Z1 = Z.
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Now we consider the numerical solution of initial value problems for Z-valued
ODEs depending on a parameter s ∈ Q

d

dt
u(s, t) = f(s, t, u(s, t)) (s ∈ Q, t ∈ [a, b]) (55)

u(s, a) = u0(s) (s ∈ Q) (56)

with f ∈ C r0,r,%
Lip (Q × [a, b] × Z,Z;κ, L) and u0 ∈ Cr0(Q,Z). A function u :

Q × [a, b] → Z is called a solution if for each s ∈ Q, u(s, t) is continuously
differentiable as a function of t and (55–56) are satisfied.

The class C r0,r,%
Lip (Q× [a, b]× Z,Z;κ, L) introduced above is a certain class of

functions with dominating mixed smoothness. We will consider the intersection
of two such classes. This enables us to exploit the full generality of (24) and,
in particular, to include also functions with isotropic smoothness. We refer to
Section 6 for further motivation, discussion, and special cases of this choice. To
define the parametric problem, let r1 ∈ N0, 0 ≤ %1 ≤ 1, σ, λ > 0, and let F be
the class of all

(f, u0) =
(
C 0,r,%

Lip (Q× [a, b]× Z,Z;κ, L) ∩ C r0,r1,%1
Lip (Q× [a, b]× Z,Z;κ, L)

)
×σBCr0 (Q,Z) (57)

such that the parameter dependent initial value problem (55–56) has a solution
u(s, t) (which is unique, due to the assumption (57) on f) such that

sup
s∈Q, t∈[a,b]

‖u(s, t)‖ ≤ λ, (58)

and moreover, if r = % = r1 = %1 = 0, then for all n ∈ N, ω ∈ Ω

sup
s∈Q

∥∥A0
n,ω(fs, u0(s))

∥∥
B([a,b],Z)

≤ λ, (59)

where fs for fixed s ∈ Q denotes the function f(s, ·, ·) from [a, b] × Z to Z. We
define the solution operator

S : F → B(Q× [a, b], Z) (60)

for (f, u0) ∈ F by S (f, u0) = u, where u = u(s, t) is the solution of (55–56).
For a continuous function g : Q× [a, b]× Z → Z1 we define a function

ḡ : [a, b]× C(Q,Z)→ C(Q,Z1)

by setting for t ∈ [a, b], x ∈ C(Q,Z)

(ḡ(t, x))(s) = g(s, t, x(s)) (s ∈ Q).

The following is the central result of this section. It relates the parametric
problem to the problem of a single Banach space valued ODE considered in
Section 2, with X = C(Q,Z) and Y = Cr0(Q,Z).
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Proposition 3.1. Given r0, r, r1 ∈ N0, 0 ≤ %, %1 ≤ 1, functions κ, L : (0,+∞)→
(0,+∞), σ, λ > 0, there are λ1 > 0 and κ1, L1 : (0,+∞)→ (0,+∞) such that the
following holds. Let Z be a Banach space and let F be defined by (57). Then for
all (f, u0) ∈ F

(f̄ , u0) ∈ F r,%([a, b]× C(Q,Z), C(Q,Z);κ1, L1, σ, λ1)

∩ F r1,%1([a, b]× Cr0(Q,Z), Cr0(Q,Z);κ1, L1, σ, λ1)

and
S(f̄ , u0) = S (f, u0). (61)

Concerning relation (61), we note that we identify functions from B(Q ×
[a, b], Z), u = u(s, t), with functions from B([a, b], B(Q,Z)), u(t) = u( · , t). For
the proof of Proposition 3.1 we need a number of lemmas. We emphasize that
the constants (including the functions κ1, L1) in the lemmas of this section do
not depend on Z and Z1.

Lemma 3.2. Given κ, L, there are functions κ1, L1 : (0,+∞) → (0,+∞) such
that the following holds: for all f ∈ C r0,0,%(Q× [a, b]× Z,Z1;κ), f̄ maps [a, b]×
Cr0(Q,Z) to Cr0(Q,Z1) and, considered as such a mapping, satisfies

f̄ ∈ C0,%([a, b]× Cr0(Q,Z), Cr0(Q,Z1);κ1) (62)

and, if f ∈ C r0,0,%
Lip (Q× [a, b]× Z,Z1;κ, L), then

f̄ ∈ C0,%
Lip([a, b]× Cr0(Q,Z), Cr0(Q,Z1);κ1, L1). (63)

Proof. We argue by induction over r0 ∈ N0. Let r0 = 0. First we show that
if g : Q × [a, b] × Z → Z1 is a continuous function, then ḡ is continuous from
[a, b] × C(Q,Z) to C(Q,Z1). Let t, tn ∈ [a, b], x, xn ∈ C(Q,Z) (n ∈ N) be such
that

lim
n→∞

|tn − t| = 0, lim
n→∞

‖xn − x‖C(Q,Z) = 0.

It follows that

K = {xn(s) : s ∈ Q, n ∈ N} ∪ {x(s) : s ∈ Q}

is a compact subset of Z. Consequently, g is uniformly continuous on Q×[a, b]×K
and therefore

lim
n→∞

sup
s∈Q
‖g(s, tn, xn(s))− g(s, t, x(s))‖Z1 = 0,

which is the continuity of ḡ. The boundedness, Hölder, and Lipschitz properties
of f̄ are readily checked on the basis of those for f . This completes the proof of
the case r0 = 0.
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Now let r0 ≥ 1 and assume that the statements (62) and (63) hold for r0− 1.
We start with (62). Let f ∈ C r0,0,%(Q× [a, b]× Z,Z1;κ). Then by (48–51),

f ∈ C r0−1,0,%(Q× [a, b]× Z,Z1;κ)

g1 :=
∂f

∂s
∈ C r0−1,0,%(Q× [a, b]× Z,L (Rd0 , Z1);κ)

g2 :=
∂f

∂z
∈ C r0−1,0,%(Q× [a, b]× Z,L (Z,Z1);κ),

therefore, by the induction assumption,

f̄ ∈ C0,%([a, b]× Cr0−1(Q,Z), Cr0−1(Q,Z1);κ1) (64)

ḡ1 ∈ C0,%([a, b]× Cr0−1(Q,Z), Cr0−1(Q,L (Rd0 , Z1));κ1) (65)

ḡ2 ∈ C0,%([a, b]× Cr0−1(Q,Z), Cr0−1(Q,L (Z,Z1));κ1). (66)

Fix t ∈ [a, b] and x ∈ Cr0(Q,Z). Then(
d

ds
f̄(t, x)

)
(s) = g1(s, t, x(s)) + g2(s, t, x(s))

dx(s)

ds
,

which means that
d

ds
f̄(t, x) = ḡ1(t, x) + ḡ2(t, x)

dx

ds
. (67)

(64–67) readily imply that f̄ maps [a, b] × Cr0(Q,Z) to Cr0(Q,Z1) and f̄ is a
continuous function from [a, b] × Cr0(Q,Z) to Cr0(Q,Z1). We omit the proof,
since it goes along the same lines as the argument below.

Now we show that f̄ satisfies the boundedness and the Hölder condition for
r0. Let R > 0 and

x, y ∈ RBCr0 (Q,Z). (68)

This implies ∥∥∥∥dxds
∥∥∥∥
Cr0−1(Q,L (Rd0 ,Z))

≤ R (69)

and together with (64–66) ∥∥f̄(t, x)
∥∥
Cr0−1(Q,Z1)

≤ κ1(R) (70)

‖ḡ1(t, x)‖Cr0−1(Q,L (Rd0 ,Z1)) ≤ κ1(R)

‖ḡ2(t, x)‖Cr0−1(Q,L (Z,Z1)) ≤ κ1(R), (71)
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so inserting into (67) gives∥∥∥∥ ddsf̄(t, x)

∥∥∥∥
Cr0−1(Q,L (Rd0 ,Z1))

≤ ‖ḡ1(t, x)‖Cr0−1(Q,L (Rd0 ,Z1))

+c ‖ḡ2(t, x)‖Cr0−1(Q,L (Z,Z1))

∥∥∥∥dxds
∥∥∥∥
Cr0−1(Q,L (Rd0 ,Z))

≤ κ1(R) + cκ1(R)R.

Combining this with (70), we obtain∥∥f̄(t, x)
∥∥
Cr0 (Q,Z1)

≤ κ1(R)(cR + 1).

Furthermore, by (68),∥∥∥∥dxds − dy

ds

∥∥∥∥
Cr0−1(Q,L (Rd0 ,Z))

≤ ‖x− y‖Cr0 (Q,Z). (72)

Let t1, t2 ∈ [a, b] and set

M0 = κ1(R)
(
|t1 − t2|% + ‖x− y‖%

Cr0−1(Q,Z)

)
. (73)

Then (64–66) imply ∥∥f̄(t1, x)− f̄(t2, y)
∥∥
Cr0−1(Q,Z1)

≤ M0 (74)

‖ḡ1(t1, x)− ḡ1(t2, y)‖Cr0−1(Q,L (Rd0 ,Z1)) ≤ M0 (75)

‖ḡ2(t1, x)− ḡ2(t2, y)‖Cr0−1(Q,L (Z,Z1)) ≤ M0. (76)

Using (67), (69), (71–72), and (75–76) it follows that∥∥∥∥ ddsf̄(t1, x)− d

ds
f̄(t2, y)

∥∥∥∥
Cr0−1(Q,L (Rd0 ,Z1))

≤ ‖ḡ1(t1, x)− ḡ1(t2, y)‖Cr0−1(Q,L (Rd0 ,Z1))

+c ‖ḡ2(t1, x)− ḡ2(t2, y)‖Cr0−1(Q,L (Z,Z1))

∥∥∥∥dxds
∥∥∥∥
Cr0−1(Q,L (Rd0 ,Z))

+c ‖ḡ2(t2, y)‖Cr0−1(Q,L (Z,Z1))

∥∥∥∥dxds − dy

ds

∥∥∥∥
Cr0−1(Q,L (Rd0 ,Z))

≤ (1 + cR)M0 + cκ1(R)‖x− y‖Cr0 (Q,Z).

Together with (73–74) this gives∥∥f̄(t1, x)− f̄(t2, y)
∥∥
Cr0 (Q,Z1)

≤ (1 + cR)κ1(R)
(
|t1 − t2|% + ‖x− y‖%

Cr0−1(Q,Z)

)
+cκ1(R)‖x− y‖Cr0 (Q,Z).
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Taking into account that by (68)

‖x− y‖Cr0 (Q,Z) ≤ (2R)1−%‖x− y‖%Cr0 (Q,Z),

this proves %-Hölder continuity and thus (62). To prove (63) for r0, it remains to
show the Lipschitz property. This is analogous to the previous argument and we
omit it here.

Lemma 3.3. Given κ, L, there are κ1, L1 : (0,+∞)→ (0,+∞) such that for all
f ∈ C r0,r,%(Q× [a, b]× Z,Z1;κ)

f̄ ∈ Cr,%([a, b]× Cr0(Q,Z), Cr0(Q,Z1);κ1) (77)

and for all f ∈ C r0,r,%
Lip (Q× [a, b]× Z,Z1;κ, L)

f̄ ∈ Cr,%Lip([a, b]× Cr0(Q,Z), Cr0(Q,Z1);κ1, L1). (78)

Proof. First we show (77). We argue by induction over r. The case r = 0 follows
from (62) of Lemma 3.2. Now let r ≥ 1 and assume that the statement holds for
r − 1. It follows from (48–51) that

f ∈ C r0,r−1,%(Q× [a, b]× Z,Z1;κ)

g1 :=
∂f

∂t
∈ C r0,r−1,%(Q× [a, b]× Z,Z1;κ)

g2 :=
∂f

∂z
∈ C r0,r−1,%(Q× [a, b]× Z,L (Z,Z1);κ).

The induction assumption implies

f̄ ∈ Cr−1,%([a, b]× Cr0(Q,Z), Cr0(Q,Z1);κ1) (79)

ḡ1 ∈ Cr−1,%([a, b]× Cr0(Q,Z), Cr0(Q,Z1);κ1) (80)

ḡ2 ∈ Cr−1,%([a, b]× Cr0(Q,Z), Cr0(Q,L (Z,Z1));κ1). (81)

Now we study the differentiability of f̄ with respect to t and x, as a function from
[a, b]× Cr0(Q,Z) to Cr0(Q,Z1). Let t1, t2 ∈ [a, b], t1 6= t2, x ∈ Cr0(Q,Z), s ∈ Q.
Then

f̄(t2, x)(s)− f̄(t1, x)(s)

t2 − t1
=
f(s, t2, x(s))− f(s, t1, x(s))

t2 − t1

=

∫ 1

0

g1(s, t1 + τ(t2 − t1), x(s))dτ =

∫ 1

0

ḡ1(t1 + τ(t2 − t1), x)(s)dτ.

By (80), ḡ1 is a continuous function from [a, b]×Cr0(Q,Z) to Cr0(Q,Z1), therefore,
with the integral below considered in Cr0(Q,Z1),

f̄(t2, x)− f̄(t1, x)

t2 − t1
=

∫ 1

0

ḡ1(t1 + τ(t2 − t1), x)dτ
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and
lim
t2→t1

sup
τ∈[0,1]

‖ḡ1(t1 + τ(t2 − t1), x)− ḡ1(t1, x)‖Cr0 (Q,Z1) = 0.

Consequently, with differentiation meant in Cr0(Q,Z1),

∂f̄

∂t
= ḡ1. (82)

We introduce the following mapping

V : Cr0(Q,L (Z,Z1))→ L (Cr0(Q,Z), Cr0(Q,Z1))

given for w ∈ Cr0(Q,L (Z,Z1)), x ∈ Cr0(Q,Z), and s ∈ Q by

((V w)x)(s) = w(s)x(s).

Clearly, V is a bounded linear operator. This together with (81) yields

V ◦ ḡ2 ∈ Cr−1,%
(
[a, b]× Cr0(Q,Z),L (Cr0(Q,Z), Cr0(Q,Z1)); ‖V ‖κ1

)
. (83)

Next let t ∈ [a, b], x, y ∈ Cr0(Q,Z), θ ∈ R, θ 6= 0, s ∈ Q. Then we have

f̄(t, x+ θy)(s)− f̄(t, x)(s)

θ
=
f(s, t, x(s) + θy(s))− f(s, t, x(s))

θ

=

∫ 1

0

g2(s, t, x(s) + τθy(s))y(s)dτ =

∫ 1

0

(
(V ḡ2(t, x+ τθy))y

)
(s)dτ.

Relation (83) shows that V ◦ ḡ2 is a continuous function from [a, b] × Cr0(Q,Z)
to L (Cr0(Q,Z), Cr0(Q,Z1)). It follows that

f̄(t, x+ θy)− f̄(t, x)

θ
=

∫ 1

0

(V ḡ2(t, x+ τθy))y dτ, (84)

moreover,

lim
θ→0

sup
τ∈[0,1],y∈BCr0 (Q,Z)

‖V ḡ2(t, x+ τθy)− V ḡ2(t, x)‖L (Cr0 (Q,Z),Cr0 (Q,Z1)) = 0,

and hence

lim
θ→0

sup
τ∈[0,1],y∈BCr0 (Q,Z)

‖(V ḡ2(t, x+ τθy))y − (V ḡ2(t, x))y‖Cr0 (Q,Z1) = 0. (85)

From (84) and (85) we conclude that f̄ is Fréchet differentiable with respect to
x as a function from [a, b]× Cr0(Q,Z) to Cr0(Q,Z1) and

∂f̄

∂x
= V ◦ ḡ2. (86)
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Combining (79–80), (82–83), and (86) completes the induction and thus the proof
of (77). By (52),

C r0,r,%
Lip (Q× [a, b]× Z,Z1;κ, L) ⊆ C r0,0,%

Lip (Q× [a, b]× Z,Z1;κ, L).

Therefore relation (63) of Lemma 3.2 yields the required Lipschitz property, which
proves (78).

Given (f, u0) ∈ F , we recall that we consider the solution u = u(s, t) of (55–
56) also as a function u(t) = u( · , t) in B([a, b], B(Q,Z)), the required bounded-
ness being a consequence of (58).

Lemma 3.4. There is a constant λ1 > 0 such that for all (f, u0) ∈ F the
following hold: u(t) ∈ Cr0(Q,Z) (t ∈ [a, b]), u is the unique solution of

du(t)

dt
= f̄(t, u(t)) (t ∈ [a, b]), u(a) = u0, (87)

considered as an equation in Cr0(Q,Z), moreover,

‖u‖B([a,b],Cr0 (Q,Z)) ≤ λ1, (88)

‖A0
n,ω(f̄ , u0)‖B([a,b],Cr0 (Q,Z)) ≤ λ1 (n ∈ N, ω ∈ Ω). (89)

Proof. Let (f, u0) ∈ F . We start with a preliminary argument. By Lemma 3.3,

f̄ ∈ Cr1,%1Lip ([a, b]× Cr0(Q,Z), Cr0(Q,Z);κ1, L1). (90)

It follows that there exists a solution w(t) of

dw(t)

dt
= f̄(t, w(t)) (t ∈ [a, b1)), w(a) = u0, (91)

considered as an ODE in Cr0(Q,Z), on a maximal interval [a, b1) with a < b1 ≤ b.
Applying δs to (91) we get

d

dt
(w(t), δs) =

(
d

dt
w(t), δs

)
= (f̄(t, w(t)), δs) = f(s, t, (w(t), δs)) (t ∈ [a, b1))

and
(w(a), δs) = (u0, δs) = u0(s).

By uniqueness of the solution to (55–56), we conclude

(w(t), δs) = u(s, t) = (u(t), δs) (s ∈ Q, t ∈ [a, b1)),

hence
w(t) = u(t) (t ∈ [a, b1)). (92)
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Now assume that
sup

t∈[a,b1)

‖w(t)‖Cr0 (Q,Z) := R0 <∞. (93)

Then (90) implies that for all t ∈ [a, b], x, y ∈ (R0 + 1)BCr0 (Q,Z)

‖f̄(t, x)‖Cr0 (Q,Z) ≤ κ1(R0 + 1)

‖f̄(t, x)− f̄(t, y)‖Cr0 (Q,Z) ≤ L1(R0 + 1)‖x− y‖Cr0 (Q,Z).

Consequently, there is a δ > 0 such that for any b2 ∈ [a, b1) the solution w(t) of
(91) on [a, b2] can be continued to a solution on [a,min(b2 + δ, b)] (see, e.g., [1],
Ch. 2, Cor. 1.7.2, or use Banach’s fix point theorem). It follows that b1 = b and
w(t) can be continued to a solution of (91) on [a, b], that is,

w ∈ C1([a, b], Cr0(Q,Z)) (94)

and

dw(t)

dt
= f̄(t, w(t)) (t ∈ [a, b]), w(a) = u0. (95)

Since u(s, · ) ∈ C1([a, b], Z) (s ∈ Q), we use continuity to conclude from (92) and
(94) that

w(t) = u(t) (t ∈ [a, b]) (96)

and
sup
t∈[a,b]

‖u(t)‖Cr0 (Q,Z) ≤ R0. (97)

To summarize, so far we showed that (93) implies (94–97).
After this preparation we prove the lemma. We argue by induction over r0.

Let r0 = 0. By (58) of the definition of F we have

sup
t∈[a,b1)

‖u(t)‖C(Q,Z) = sup
s∈Q,t∈[a,b1)

‖u(s, t)‖Z ≤ λ.

Therefore (93) holds with R0 = λ, so (96) and (97) imply (88) for r0 = 0.
Moreover, if r = % = r1 = %1 = 0, then (89) follows by (59), while for r + % > 0
or r1 + %1 > 0 we note that by (51) and (57)

f ∈ C 0,r,%
Lip (Q× [a, b]× Z,Z;κ, L)

f ∈ C 0,r1,%1
Lip (Q× [a, b]× Z,Z;κ, L)

and therefore, by Lemma 3.3

f̄ ∈ Cr,%Lip([a, b]× C(Q,Z), C(Q,Z);κ1, L1)

f̄ ∈ Cr1,%1Lip ([a, b]× C(Q,Z), C(Q,Z);κ1, L1).
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Now (89) is a consequence of (the already proved) relation (88) for r0 = 0 and
Proposition 2.1 (for n < ν0 it follows directly from the boundedness properties of
f and u0).

Next let r0 ≥ 1 and assume the statements are true for r0−1. Let (f, u0) ∈ F
and put

g1 :=
∂f

∂s
∈ C r0−1,r,%(Q× [a, b]× Z,L (Rd0 , Z);κ) (98)

g2 :=
∂f

∂z
∈ C r0−1,r,%(Q× [a, b]× Z,L (Z,Z);κ). (99)

By Lemma 3.3,

ḡ1 ∈ Cr,%([a, b]× Cr0−1(Q,Z), Cr0−1(Q,L (Rd0 , Z));κ1) (100)

ḡ2 ∈ Cr,%([a, b]× Cr0(Q,Z), Cr0(Q,L (Z,Z));κ1). (101)

We start with the proof of (88). By the induction assumption, u(t) is the solution
of (87), considered in Cr0−1(Q,Z)), and

‖u‖B([a,b],Cr0−1(Q,Z)) ≤ c0. (102)

From (100–102) and the assumptions on u0 we conclude that there is a c1 > 0
such that

sup
t∈[a,b]

‖ḡ1(t, u(t))‖Cr0−1(Q,L (Rd0 ,Z)) ≤ c1 (103)

sup
t∈[a,b]

‖ḡ2(t, u(t))‖Cr0−1(Q,L (Z)) ≤ c1 (104)∥∥∥∥du0

ds

∥∥∥∥
Cr0−1(Q,L (Rd0 ,Z))

≤ σ. (105)

By uniqueness, w(t) = u(t), where w is the solution of (91), so u(t) ∈ Cr0(Q,Z)
for all t ∈ [a, b1) and u(t) is continuously differentiable as a function from
[a, b1) to Cr0(Q,Z). Let D be differentiation d

ds
, considered as an operator

D ∈ L (Cr0(Q,Z), Cr0−1(Q,L (Rd0 , Z))). Then applying D to (91) with w = u
and inserting (98–99), we get

d(Du(t))

dt
= D

du(t)

dt
= Df̄(t, u(t))

= ḡ1(t, u(t)) + ḡ2(t, u(t))Du(t) (t ∈ [a, b1))

Du(a) = Du0.

Integrating with respect to t, we obtain for t ∈ [a, b1)

Du(t) = Du0 +

∫ t

a

(ḡ1(τ, u(τ)) + ḡ2(τ, u(τ))Du(τ)) dτ.
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Using (103–105) we conclude for t ∈ [a, b1)

‖Du(t)‖Cr0−1(Q,L (Rd0 ,Z))

≤ ‖Du0‖Cr0−1(Q,L (Rd0 ,Z)) +

∫ t

a

‖ḡ1(τ, u(τ))‖Cr0−1(Q,L (Rd0 ,Z)) dτ

+

∫ t

a

c2 ‖ḡ2(τ, u(τ))‖Cr0−1(Q,L (Z)) ‖Du(τ)‖Cr0−1(Q,L (Rd0 ,Z)) dτ

≤ σ + (b− a)c1 + c1c2

∫ t

a

‖Du(τ)‖Cr0−1(Q,L (Rd0 ,Z)) dτ.

Since t→ Du(t) is a continuous function from [a, b1) to Cr0−1(Q,L (Rd0 , Z)), we
can use Gronwall’s lemma to get

sup
t∈[a,b1)

‖Du(t)‖Cr0−1(Q,L (Rd0 ,Z)) ≤ (σ + (b− a)c1)ec1c2(b−a) := c3,

which together with (102) gives

sup
t∈[a,b1)

‖w(t)‖Cr0 (Q,Z) = sup
t∈[a,b1)

‖u(t)‖Cr0 (Q,Z) ≤ max(c0, c3) := c4. (106)

Consequently, (93) holds with R0 = c4, so (96) and (97) give (88) for r0.
Now we turn to (89). By (11–14),

A0
n,ω(f̄ , u0) = v ∈ B([a, b], C(Q,Z)),

where

v(t) =

{
pk,0(t) if t ∈ [tk, tk+1) and 0 ≤ k ≤ n− 1
un if t = tn

and for k = 0, . . . , n− 1

pk,0(t) = uk + f̄(tk, uk)(t− tk) (t ∈ [tk, tk+1]) (107)

uk+1 = uk + hf̄(ξk+1, pk,0(ξk+1)). (108)

The induction assumption implies

max
0≤k≤n−1

max
t∈[tk,tk+1]

‖pk,0(t)‖Cr0−1(Q,Z) ≤ c0 (109)

and
max

0≤k≤n
‖uk‖Cr0−1(Q,Z) ≤ c0. (110)

Using (90) and u0 ∈ Cr0(Q,Z), it readily follows from (107–108) that for 0 ≤
k ≤ n− 1

pk,0(t) ∈ Cr0(Q,Z) (t ∈ [tk, tk+1], 0 ≤ k ≤ n− 1) (111)

uk ∈ Cr0(Q,Z) (0 ≤ k ≤ n). (112)
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Differentiating (107) and (108), we obtain for 0 ≤ k ≤ n− 1

dpk,0(ξk+1)

ds
=

duk
ds

+ (ξk+1 − tk)ḡ1(tk, uk) + (ξk+1 − tk)ḡ2(tk, uk)
duk
ds

(113)

duk+1

ds
=

duk
ds

+ hḡ1

(
ξk+1, pk,0(ξk+1)

)
+hḡ2

(
ξk+1, pk,0(ξk+1)

)dpk,0(ξk+1)

ds
. (114)

Inserting (113) into (114), we get

duk+1

ds
=

duk
ds

+ hḡ1

(
ξk+1, pk,0(ξk+1)

)
+ hḡ2

(
ξk+1, pk,0(ξk+1)

)duk
ds

+h(ξk+1 − tk)ḡ2

(
ξk+1, pk,0(ξk+1)

)
ḡ1(tk, uk)

+h(ξk+1 − tk)ḡ2

(
ξk+1, pk,0(ξk+1)

)
ḡ2(tk, uk)

duk
ds

.

Hence,

duk+1

ds
= (IZ + hvk)

duk
ds

+ hwk, (115)

where

vk = ḡ2

(
ξk+1, pk,0(ξk+1)

)
+ (ξk+1 − tk)ḡ2

(
ξk+1, pk,0(ξk+1)

)
ḡ2(tk, uk)

wk = ḡ1

(
ξk+1, pk,0(ξk+1)

)
+ (ξk+1 − tk)ḡ2

(
ξk+1, pk,0(s, ξk+1)

)
ḡ1(tk, uk).

By (100–101) and (109–110) it follows that

max
0≤k≤n−1

‖vk‖Cr0−1(Q,L (Z)) ≤ c1 (116)

max
0≤k≤n−1

‖wk‖Cr0−1(Q,L (Rd0 ,Z)) ≤ c1. (117)

Moreover, by the assumption on u0,∥∥∥∥du0

ds

∥∥∥∥
Cr0−1(Q,L (Rd0 ,Z))

≤ σ. (118)

We have by (115–117)∥∥∥∥duk+1

ds

∥∥∥∥
Cr0−1(Q,L (Rd0 ,Z))

≤
(

1 + c2h ‖vk‖Cr0−1(Q,L (Z))

)∥∥∥∥dukds
∥∥∥∥
Cr0−1(Q,L (Rd0 ,Z))

+ h ‖wk‖Cr0−1(Q,L (Rd0 ,Z))

≤ (1 + c1c2h)

∥∥∥∥dukds
∥∥∥∥
Cr0−1(Q,L (Rd0 ,Z))

+ c1h.
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From this and (118) we conclude for 1 ≤ k ≤ n∥∥∥∥dukds
∥∥∥∥
Cr0−1(Q,L (Rd0 ,Z))

≤ σ(1 + c1c2h)k + c1h
k−1∑
j=0

(1 + c1c2h)j

≤ σ(1 + c1c2h)k + c1h
(1 + c1c2h)k − 1

c1c2h

≤ σ(1 + 1/c2)(1 + c1c2h)n ≤ σ(1 + 1/c2)ec1c2nh

= σ(1 + 1/c2)ec1c2(b−a) := c3.

Combining this with (110) gives

max
0≤k≤n

‖uk‖Cr0 (Q,Z) ≤ c4 := max(c0, c3),

which, taking into account (107) and (90), also yields

max
0≤k≤n−1

max
t∈[tk,tk+1]

‖pk,0(t)‖Cr0 (Q,Z) ≤ c5,

and hence the desired result.

Proof of Proposition 3.1. The result follows from Lemmas 3.3–3.4, taking into
account that (88) and (89) for r0 > 0 imply the respective estimates also for
r0 = 0.

4 The algorithm and its analysis

For l ∈ N0 let Γl be the equidistant grid on Q of meshsize (max(r0, 1))−12−l and
let {Qli : i = 1, 2, . . . , 2d0l} be the partition of Q into cubes of sidelength 2−l.
Define the following operators Eli and Rli acting on Φ(Rd0 , Z), the space of all
functions from Rd0 to Z: For f ∈ Φ(Rd0 , Z) and s ∈ Rd0 put

(Elif)(s) = f(sli + 2−ls) (119)

(Rlif)(s) = f(2l(s− sli)), (120)

where sli is the point in Qli with minimal coordinates. We also apply these
operators to functions which are defined on subsets of Rd0 . In this case we assume
that the function is extended to Rd0 by zero. Let for f ∈ Φ(Rd0 , Z)

Pf =

ν1∑
j=1

f(aj)ϕj (121)

be the Z-valued tensor product Lagrange interpolation operator of degree
max(r0, 1), where (aj)

ν1
j=1 are the points of Γ0 and (ϕj)

ν1
j=1 are the respective
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scalar Lagrange polynomials, considered as functions on Rd0 . If Pmax(r0,1) denotes
the space of polynomials on Rd0 of degree at most max(r0, 1), with coefficients in
Z, then we have

Pg = g (g ∈ Pmax(r0,1)).

Define Pl : Φ(Q,Z)→ C(Q,Z) for l ∈ N0 by

(Plf)(s) = (RliPElif)(s) (s ∈ Qli, f ∈ Φ(Q,Z)),

thus, by (121),

(Plf)(s) =

ν1∑
j=1

f(sli + 2−laj)ϕj(2
l(s− sli)) (s ∈ Qli),

so Pl is Z-valued composite with respect to the partition Qli tensor product
Lagrange interpolation of degree max(r0, 1). Hence,

(Plf)(s) = f(s) (s ∈ Γl, f ∈ Φ(Q,Z))

and Pl is of the form

Plf =
∑
s∈Γl

f(s)ψls (f ∈ Φ(Q,Z)) (122)

with ψls ∈ C(Q).
Let (f, u0) ∈ F . We define the following multilevel algorithm for the ap-

proximate solution of the parametric problem (55–56). Let l0, l1 ∈ N0, l0 ≤ l1,
nl0 , . . . , nl1 ∈ N, ω ∈ Ω, and set

Aω(f, u0) = Pl0

((
Arnl0 ,ω

(fs, u0(s))
)
s∈Γl0

)
+

l1∑
l=l0+1

(Pl − Pl−1)
((
Ar1nl,ω(fs, u0(s))

)
s∈Γl

)
, (123)

where we use the respective algorithms given by (7–12). Let card(Aω) denote the
number of function evaluations involved in Aω. We have

card(Aω) ≤ c

l1∑
l=l0

nl2
d0l. (124)

Note also that the number of arithmetic operations of Aω (including additions
in Z and multiplications of elements of Z by scalars) is bounded from above by
c card(Aω) for some c > 0.
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Theorem 4.1. Let r0, r, r1 ∈ N0, 0 ≤ %, %1 ≤ 1 with r + % ≥ r1 + %1, let
κ, L : (0,+∞) → (0,+∞), σ, λ > 0, and 1 ≤ p ≤ 2. Then there are constants
c1, c2 > 0 and ν0 ∈ N such that the following holds. Let Z be a Banach space and
let F be defined by (57). For all l0, l1 ∈ N0 with l0 ≤ l1 and for all (nl)

l1
l=l0
⊂ N

with nl ≥ ν0 (l0 ≤ l ≤ l1) the so-defined algorithm (Aω)ω∈Ω satisfies

sup
(f,u0)∈F

‖S (f, u0)−Aω(f, u0)‖B(Q×[a,b],Z)

≤ c12−r0l1 + c1n
−r−%
l0

+ c1

l1∑
l=l0+1

2−r0ln−r1−%1l (ω ∈ Ω) (125)

and for all l∗ with l0 ≤ l∗ ≤ l1

sup
(f,u0)∈F

(
E ‖S (f, u0)−Aω(f, u0)‖pB(Q×[a,b],Z)

)1/p

≤ c22−r0l1 + c2(l0 + 1)1/2τp(Z)n
−r−%−1+1/p
l0

+c2

l∗∑
l=l0+1

(l + 1)1/2τp(Z)2−r0ln
−r1−%1−1+1/p
l + c2

l1∑
l=l∗+1

2−r0ln−r1−%1l . (126)

Remark 4.2. Observe that the restriction r+% ≥ r1+%1 in Theorem 4.1 is no loss
of generality. Indeed, if r+ % < r1 + %1, then either r < r1 or (r = r1) ∧ (% < %1).
It follows from (52–54) that in both cases we have

C r0,r1,%1
Lip (Q× [a, b]× Z,Z;κ, L) ⊆ C 0,r,%

Lip (Q× [a, b]× Z,Z; 2κ, L).

Consequently,

C r0,r1,%1
Lip (Q× [a, b]× Z,Z;κ/2, L)

⊆ C 0,r,%
Lip (Q× [a, b]× Z,Z;κ, L) ∩ C r0,r1,%1

Lip (Q× [a, b]× Z,Z;κ, L)

⊆ C r0,r1,%1
Lip (Q× [a, b]× Z,Z;κ, L),

which by (52) and (57) means that the case r+% < r1 +%1 is essentially the same
as the case r = r1, % = %1.

For the reason to consider a variable summation index l∗ in (126) we refer to
Remark 2.4.

Corollary 4.3. Assume the conditions of Theorem 4.1 and let Z be of type p.
Then there are constants c1−3 > 0 such that for all n ∈ N with n ≥ 2 the following
hold. Setting

l1 =

⌈
log n

d0

⌉
, l0 =

⌊
r + %− r1 − %1

r0
d0

+ r + %− r1 − %1

l1

⌋
, (127)

nl = ν0

⌈
2d0(l1−l)

⌉
(l0 ≤ l ≤ l1), (128)
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the so-defined algorithm (Aω)ω∈Ω fulfills

card(Aω) ≤ c1n log n (ω ∈ Ω). (129)

Moreover,

sup
(f,u0)∈F

‖S (f, u0)−Aω(f, u0)‖B(Q×[a,b],Z) ≤ c2n
−υ1(log n)θ1 (ω ∈ Ω), (130)

where

υ1 =


r0
d0

r0
d0

+r+%−r1−%1
(r + %) if r0

d0
> r1 + %1

r0
d0

if r0
d0
≤ r1 + %1

(131)

and

θ1 =

{
0 if r0

d0
6= r1 + %1

1 if r0
d0

= r1 + %1.

Finally,

sup
(f,u0)∈F

(
E ‖S (f, u0)−Aω(f, u0)‖pB(Q×[a,b],Z)

)1/p

≤ c3n
−υ2(p)(log n)θ2(p), (132)

with

υ2(p) =


r0
d0

r0
d0

+r+%−r1−%1

(
r + %+ 1− 1

p

)
if r0

d0
> r1 + %1 + 1− 1

p

r0
d0

if r0
d0
≤ r1 + %1 + 1− 1

p

(133)

and

θ2(p) =

{
1
2

if r0
d0
6= r1 + %1 + 1− 1

p
3
2

if r0
d0

= r1 + %1 + 1− 1
p
.

First we derive Corollary 4.3 from Theorem 4.1.

Proof. Relation (129) follows directly from (124) and (128). Next observe that
by (127)

l1 − l0 =

⌈
r0
d0

r0
d0

+ r + %− r1 − %1

l1

⌉
, (134)

and therefore

n−r−%l0
≤ 2−(r+%)d0(l1−l0) = 2−(r+%−r1−%1)d0(l1−l0)−(r1+%1)d0(l1−l0)

≤ 2−r0l0−(r1+%1)d0(l1−l0). (135)
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Furthermore,

2−r0ln−r1−%1l ≤ 2−r0l−(r1+%1)d0(l1−l) (l0 < l ≤ l1). (136)

Now (125) together with (134–136) gives

sup
(f,u0)∈F

‖S (f, u0)−Aω(f, u0)‖B(Q×[a,b],Z)

≤ c

l1∑
l=l0

2−r0l−(r1+%1)d0(l1−l)

≤


c2−r0l0−(r1+%1)d0(l1−l0) ≤ cn−υ1 if r0

d0
> r1 + %1

c(l1 − l0 + 1)2−r0l1 ≤ cn−r0/d0 log n if r0
d0

= r1 + %1

c2−r0l1 ≤ cn−r0/d0 if r0
d0
< r1 + %1,

which proves (130). In a similar way, setting β = r1 + %1 + 1 − 1/p, (126) with
l∗ = l1 and (134–136) yield

sup
(f,u0)∈F

(
E ‖S (f, u0)−Aω(f, u0)‖pB(Q×[a,b],Z)

)1/p

≤ c

l1∑
l=l0

(l + 1)1/22−r0l−βd0(l1−l)

≤


c(l1 + 1)1/22−r0l0−βd0(l1−l0) ≤ cn−υ2(p)(log n)1/2 if r0

d0
> β

c(l1 − l0 + 1)(l1 + 1)1/22−r0l1 ≤ cn−r0/d0(log n)3/2 if r0
d0

= β

c(l1 + 1)1/22−r0l1 ≤ cn−r0/d0(log n)1/2 if r0
d0
< β,

which shows (132).

Remark 4.4. Concerning Corollary 4.3 we note that balancing the nl more clev-
erly could reduce the cost to c1n in some regions of the smoothness parameters.
However, this balancing could lead to further logarithmic factors in either the
deterministic or the randomized setting. Since in view of Corollary 5.2 in general
Banach spaces even the optimal exponent is known only up to an arbitrary small
ε > 0, we neglect the aspect of improving the logarithms. See also the comment
at the end of Section 6.

Also note that the choice of the parameters (127–128) depends only on the
smoothness class, not on the setting. This means that the randomized algorithm
satisfies the (usually stronger) error bound of the randomized setting, while each
realization also satisfies the deterministic bound.

The proof of Theorem 4.1 will be given after some preparations. First we
show that there are constants c1, c2 > 0 such that for all Banach spaces Z and
l ∈ N0

‖Pl‖L (C(Q,Z)) ≤ c1 (137)

‖J − PlJ‖L (Cr0 (Q,Z),C(Q,Z)) ≤ c22−r0l, (138)
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where J : Cr0(Q,Z) → C(Q,Z) is the canonical embedding. This is well-known
in the scalar case and easily extended to the Banach space case as follows. Denote
by PR

l and JR the respective scalar operators. Then we have

‖Plf‖C(Q,Z) = sup
z∗∈BZ∗

‖ (Plf, z
∗) ‖C(Q) = sup

z∗∈BZ∗

∥∥PR
l (f, z∗)

∥∥
C(Q)

≤ c1 sup
z∗∈BZ∗

‖ (f, z∗) ‖C(Q) = c1‖f‖C(Q,Z) (139)

and similarly,

‖(J − PlJ)f‖C(Q,Z)

= sup
z∗∈BZ∗

∥∥(JR − PR
l J

R) (f, z∗)
∥∥
C(Q)
≤ c22−r0l sup

z∗∈BZ∗
‖ (f, z∗) ‖Cr0 (Q)

= c22−r0l max
0≤j≤r0

sup
z∗∈BZ∗

∥∥∥∥(djfdsj , z∗
)∥∥∥∥

C(Q,Lj(Rd0 ,R))

= c22−r0l‖f‖Cr0 (Q,Z). (140)

In order to apply Proposition 2.3 we now construct operators Tl : C(Q,Z)→
Cr0(Q,Z) with certain suitable boundedness properties. Put

U =

[
− 1

max(r0, 1)
, 1 +

1

max(r0, 1)

]d0
,

Il = {1, 2, . . . , 2d0l}, and for l ∈ N0, i ∈ Il

Uli = sli + 2−lU. (141)

Let η ∈ C∞(Rd0) be such that η ≥ 0, η ≡ 1 on Q, and supp (η) ⊆ U . Then∑
i∈Il

(Rliη)(s) ≥ 1 (s ∈ Q, l ∈ N0). (142)

Define functions ηli on Q (i ∈ Il, l ∈ N0) by

ηli(s) =
(Rliη)(s)∑
j∈Il(Rljη)(s)

(s ∈ Q). (143)

We define Tl : Φ(Q,Z)→ Cr0(Q,Z) for l ∈ N0 and f ∈ Φ(Q,Z) by

(Tlf)(s) =
∑
i∈Il

ηli(s) (RliPElif)(s) (s ∈ Q), (144)

consequently, using (119) and (121),

(Tlf)(s) =
∑
i∈Il

ν1∑
j=1

f(sli + 2−laj) ηli(s)Rliϕj(s) (s ∈ Q). (145)
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Thus, Tl is of the form

Tlf =
∑
s∈Γl

f(s)ζls (f ∈ Φ(Q,Z)) (146)

with ζls ∈ Cr0(Q).
For the proof of the next lemma we denote for f ∈ Cm(Q)

|f |m,Q =

∥∥∥∥dmfdsm

∥∥∥∥
C(Q,Lm(Rd0 ,R))

.

Lemma 4.5. There are constants c1, c2 > 0 such that for all Banach spaces Z
and l ∈ N0

‖Tl‖L (C(Q,Z)) ≤ c1 (147)

‖Tl‖L (Cr0 (Q,Z)) ≤ c2. (148)

Moreover, for f ∈ Φ(Q,Z)

(Tlf)(s) = f(s) (s ∈ Γl). (149)

Proof. We first prove the result for Z = R. We have

ηli(s) ≥ 0 (s ∈ Q) (150)

ηli(s) = 0 (s ∈ Q \ Uli) (151)∑
i∈Il

ηli(s) = 1 (s ∈ Q). (152)

Moreover, there are constants c1, c2 > 0 such that for m ∈ N0, 0 ≤ m ≤ r0, l ∈ N0

‖Rliη‖Cm(Rd0 ) ≤ c1 2ml (i ∈ Il) (153)

and ∥∥∥∑
i∈Il

Rliη
∥∥∥
Cm(Rd0 )

≤ c2 2ml. (154)

From (142–143) and (153–154) we get for 0 ≤ m ≤ r0

‖ηli‖Cm(Q) ≤ c 2ml. (155)

First we show (149). Let s ∈ Γl. If s ∈ Qli, then (RliPElif)(s) = f(s). On the
other hand, by the definition of the support of η, if s 6∈ Qli, then s 6∈ U0

li (the
interior of Uli), hence (Rliη)(s) = 0, and therefore ηli(s) = 0. This together with
(144) and (152) implies (149).

Relation (147) is an immediate consequence of (144) and (150–152). Now we
turn to (148). Due to (147), we can assume that r0 > 0. By (121), for f ∈ Cr0(U)
and 0 ≤ m ≤ r0

‖Pf‖Cm(U) ≤ c‖f‖Cr0 (U),
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and consequently,

‖f − Pf‖Cm(U) = inf
g∈Pr0

‖(f − g)− P (f − g)‖Cm(U)

≤ c inf
g∈Pr0

‖f − g‖Cr0 (U) ≤ c|f |r0,U , (156)

where the latter relation is an application of Theorem 3.1.1 from [2] (this theo-
rem is formulated for Sobolev spaces W r0

∞ (U), but since f, Pf, g ∈ Cr0(U), the
corresponding (semi-)norms coincide). Let f ∈ Cr0(Q) and let f̃ ∈ Cr0(Rd0) be
an extension of f with

‖f̃‖Cr0 (Rd0 ) ≤ c‖f‖Cr0 (Q),

which exists due to the Whitney extension theorem, see [30], [18], Th. 2.3.6. From
(151) and (152) we conclude

‖f − Tlf‖Cr0 (Q) =
∥∥∥∑
i∈Il

ηli(f −RliPElif)
∥∥∥
Cr0 (Q)

≤ cmax
i∈Il
‖ηli(f −RliPElif)‖Cr0 (Q). (157)

Furthermore, for 0 ≤ m ≤ r0

‖Rlig‖Cm(Uli) ≤ c2ml‖g‖Cm(U) (g ∈ Cm(U)) (158)

and, using (155),

‖ηlig‖Cr0 (Q∩Uli) ≤ c

r0∑
m=0

2(r0−m)l‖g‖Cm(Q∩Uli) (g ∈ Cr0(Q ∩ Uli)). (159)

Applying (158–159) and (156), we obtain

‖ηli(f −RliPElif)‖Cr0 (Q) = ‖ηli(f −RliPElif)‖Cr0 (Q∩Uli)

≤ c

r0∑
m=0

2(r0−m)l‖f −RliPElif‖Cm(Q∩Uli)

≤ c

r0∑
m=0

2(r0−m)l‖f̃ −RliPElif̃‖Cm(Uli)

≤ c 2r0l
r0∑
m=0

‖Elif̃ − PElif̃‖Cm(U) ≤ c 2r0l|Elif̃ |r0,U . (160)

Finally,

max
i∈Il
|Elif̃ |r0,U = 2−r0l max

i∈Il
|f̃ |r0,Uli ≤ 2−r0l|f̃ |r0,Rd0

≤ 2−r0l‖f̃‖Cr0 (Rd0 ) ≤ c 2−r0l‖f‖Cr0 (Q). (161)
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Combining (157) and (160–161), we obtain

‖Tlf‖Cr0 (Q) ≤ ‖f‖Cr0 (Q) + ‖f − Tlf‖Cr0 (Q) ≤ c‖f‖Cr0 (Q),

which concludes the proof of (148) for Z = R.
Now let Z be an arbitrary Banach space and let Tl be defined by (144) for Z,

while TR
l denotes the respective operator for R. Using the already shown scalar

case, the general case of (147) follows analogously to (139). The Banach space
case of (148) is derived as

‖Tlf‖Cr0 (Q,Z) = max
0≤j≤r0

sup
z∗∈BZ∗

∥∥∥∥(dj(Tlf)

dsj
, z∗
)∥∥∥∥

C(Q,Lj(Rd0 ,R))

= sup
z∗∈BZ∗

max
0≤j≤r0

∥∥∥∥∥dj
(
TR
l (f, z∗)

)
dsj

∥∥∥∥∥
C(Q,Lj(Rd0 ,R))

= sup
z∗∈BZ∗

∥∥TR
l (f, z∗)

∥∥
Cr0 (Q)

≤ c2 sup
z∗∈BZ∗

‖ (f, z∗) ‖Cr0 (Q) = c2‖f‖Cr0 (Q,Z),

where for the latter relation we refer to the last part of (140).

We also need the following result.

Lemma 4.6. There are constants c1, c2 > 0 such that for all 1 ≤ p ≤ 2, p ≤
q <∞, for all n ∈ N, and for any Banach space Z and measure space (M,µ) the
following hold:

τp(Lq(M,µ, Z)) ≤ c1
√
q τp(Z) (162)

τp(`
n
∞(Z)) ≤ c2

√
log(n+ 1) τp(Z). (163)

Proof. We start with (162). Let (gi)
m
i=1 ⊂ Lq(M,µ, Z). Then we have(

E
∥∥∥ m∑
i=1

εigi

∥∥∥p
Lq(M,µ,Z)

)q/p

≤ E
∥∥∥ m∑
i=1

εigi

∥∥∥q
Lq(M,µ,Z)

=

∫
M

E
∥∥∥ m∑
i=1

εigi(t)
∥∥∥q
Z
dµ(t), (164)

with (εi)
m
i=0 a sequence of independent centered Bernoulli random variables. Next
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we apply the equivalence of moments and the type inequality to obtain∫
M

E
∥∥∥ m∑
i=1

εigi(t)
∥∥∥q
Z
dµ(t) (165)

≤ (c
√
q)q
∫
M

(
E
∥∥∥ m∑
i=1

εigi(t)
∥∥∥p
Z

)q/p
dµ(t) (166)

≤ (c
√
q τp(Z))q

∫
M

( m∑
i=1

‖gi(t)‖pZ
)q/p

dµ(t) (167)

with a constant c > 0 independent of p and q (see, e.g., [23], p. 100, for the step
from (165) to (166)). Using the triangle inequality in Lq/p(M,µ), we get∫

M

( m∑
i=1

‖gi(t)‖pZ
)q/p

dµ(t)

≤

(
m∑
i=1

(∫
M

‖gi(t)‖qZdµ(t)

)p/q)q/p

=

(
m∑
i=1

‖gi‖pLq(M,µ,Z)

)q/p

. (168)

Joining (164), (167), and (168) yields (162). To show (163) we note that the
identity map IZ : `nq (Z)→ `n∞(Z) satisfies

‖IZ‖ = 1, ‖I−1
Z ‖ = n1/q. (169)

If n ≥ 4, we set q = log n, so q ≥ 2 ≥ p and n1/q ≤ 2. For n < 4 we put q = 2.
Now (163) follows from (162) and (169).

Proof of Theorem 4.1. Our goal is to apply Proposition 2.3 with X = C(Q,Z)
and Y = Cr0(Q,Z). Using that Γk ⊆ Γl for k ≤ l, it follows from (122) and (149)
of Lemma 4.5 that

PkTl = Pk (k ≤ l). (170)

We put for l ∈ N0

Xl = Tl(C(Q,Z)) ⊂ C(Q,Z), Yl = Tl(C
r0(Q,Z)) ⊂ Cr0(Q,Z),

so Xl = Yl algebraically, but Xl is endowed with the norm induced by C(Q,Z)
and Yl with the norm induced by Cr0(Q,Z). Next we derive estimates of τp(Xl)
and τp(Yl). For i ∈ Il we let Vli be the linear vector space

Vli = span
{
ηlkRlkϕj|Qli : k ∈ Il with U0

lk ∩Qli 6= ∅, j = 1, . . . , κ
}
.

Furthermore, let

Xli =
(
Vli, ‖ ‖C(Qli)

)
, Yli =

(
Vli, ‖ ‖Cr0 (Qli)

)
,

X̃li =
(
Vli ⊗ Z, ‖ ‖C(Qli,Z)

)
, Ỹli =

(
Vli ⊗ Z, ‖ ‖Cr0 (Qli,Z)

)
,
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where ⊗ denotes the algebraic tensor product. We observe that by (145), for
f ∈ C(Q,Z)

Tlf |Qli ∈ X̃li.

Moreover, for m = 0, r0

‖Tlf‖Cm(Q,Z) = max
i∈Il

∥∥Tlf |Qli∥∥Cm(Qli,Z)
.

Consequently, Xl can be identified isometrically with a subspace of

X̃l =

(⊕
i∈Il

X̃li

)
∞

(171)

and Yl with a subspace of

Ỹl =

(⊕
i∈Il

Ỹli

)
∞

. (172)

It follows from (141) and (151) that there is a constant c > 0 such that for all
l ∈ N0, i ∈ Il

dli := dimVli ≤ c. (173)

Two Banach spaces Z1 and Z2 are called c-isomorphic, where c ≥ 1, if there is
an isomorphism T : Z1 → Z2 with ‖T‖‖T−1‖ ≤ c. The Banach-Mazur distance
d(Z1, Z2) between Z1 and Z2 is defined to be the infimum of all such c. Next we
show that there is a constant c > 0 such that

d(X̃li, `
dli
∞ (Z)) ≤ c, d(Ỹli, `

dli
∞ (Z)) ≤ c (l ∈ N0, i ∈ Il). (174)

Indeed, it suffices to consider Ỹli, the case X̃li follows by setting r0 = 0. Let
(gk)

dli
k=1 be an Auerbach basis of Yli, that is,

max
1≤k≤dli

|αk| ≤

∥∥∥∥∥
dli∑
k=1

αkgk

∥∥∥∥∥
Yli

≤
dli∑
k=1

|αk| (αk ∈ R, k = 1, . . . , dli). (175)

Such bases exist in every finite dimensional Banach space, see [24], Prop. 1.c.3.
Now define T : Vli ⊗ Z → `dli∞ (Z) for

w =

dli∑
k=1

gk ⊗ zk ∈ Vli ⊗ Z

by Tw = (zk)
dli
k=1. Then

‖w‖Ỹli =

∥∥∥∥∥
dli∑
k=1

gk ⊗ zk

∥∥∥∥∥
Ỹli

= max
0≤j≤r0

max
z∗∈BZ∗

∥∥∥∥∥
dli∑
k=1

(zk, z
∗)
djgk
dsj

∥∥∥∥∥
C(Qli,Lj(Rd0 ,R))

= max
z∗∈BZ∗

∥∥∥∥∥
dli∑
k=1

(zk, z
∗) gk

∥∥∥∥∥
Cr0 (Qli)

= max
z∗∈BZ∗

∥∥∥∥∥
dli∑
k=1

(zk, z
∗) gk

∥∥∥∥∥
Yli

.
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Moreover, using (175), it follows that

‖Tw‖
`
dli∞ (Z)

= max
1≤k≤dli

‖zk‖ = max
z∗∈BZ∗

max
1≤k≤dli

| (zk, z∗) |

≤ max
z∗∈BZ∗

∥∥∥∥∥
dli∑
k=1

(zk, z
∗) gk

∥∥∥∥∥
Yli

≤ max
z∗∈BZ∗

dli∑
k=1

| (zk, z∗) | ≤ dli max
1≤k≤dli

‖zk‖ = dli‖Tw‖`dli∞ (Z),

hence ‖T‖‖T−1‖ ≤ dli, which together with (173) gives the second relation of
(174).

From (173) we get

ml :=
∑
i∈Il

dli ≤ c2d0l (l ∈ N0). (176)

It follows from (171), (172), and (174) that

d(X̃l, `
ml
∞ (Z)) ≤ c, d(Ỹl, `

ml
∞ (Z)) ≤ c (l ∈ N0),

and therefore

τp(Xl) ≤ τp(X̃l) ≤ cτp(`
ml
∞ (Z))

τp(Yl) ≤ τp(Ỹl) ≤ cτp(`
ml
∞ (Z)).

This together with Lemma 4.6 and (176) implies that there is a constant c > 0
such that for all l ∈ N0

τp(Yl) ≤ c(l + 1)1/2τp(Z), τp(Xl) ≤ c(l + 1)1/2τp(Z). (177)

Furthermore, if f ∈ C 0,0,0
Lip (Q × [a, b] × Z,Z;κ, L), we get from (146) and (149)

that for all l ∈ N0, t ∈ [a, b], x ∈ C(Q,Z)

Tlf̄(t, x) =
∑
s∈Γl

(
f̄(t, x)

)
(s) ζls =

∑
s∈Γl

f(s, t, x(s)) ζls

=
∑
s∈Γl

f(s, t, (Tlx)(s)) ζls =
∑
s∈Γl

(
f̄(t, Tlx)

)
(s) ζls

= Tlf̄(t, Tlx). (178)

Similarly, for all x ∈ C(Q,Z) and s ∈ Q

(f̄(t, x), δs) = f(s, t, x(s)) = f(s, t, (x, δs)) = fs(t, (x, δs)).
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By Lemma 3.2, f̄ ∈ C0,0
Lip([a, b]×C(Q,Z), C(Q,Z);κ1, L1) for some κ1, L1 and by

definition, see (48–50), fs ∈ C0,0
Lip([a, b] × Z,Z;κ, L). Now we apply Lemma 2.2

with T = δs and g = fs and obtain(
Arnl0 ,ω

(f̄ , u0), δs

)
= Arnl0 ,ω

(fs, u0(s)) (s ∈ Q) (179)

(Ar1nl,ω(f̄ , u0), δs) = Ar1nl,ω(fs, u0(s)) (s ∈ Q, l0 < l ≤ l1). (180)

As a consequence of (25), (123), (179), and (180), we can relate algorithm Aω

for the parametric problem to algorithm Aω for the general Banach space valued
problem of Section 2 as follows

Aω(f, u0) = Pl0

((
Arnl0 ,ω

(fs, u0(s))
)
s∈Γl0

)
+

l1∑
l=l0+1

(Pl − Pl−1)
((
Ar1nl,ω(fs, u0(s))

)
s∈Γl

)
= Pl0A

r
nl0 ,ω

(f̄ , u0) +

l1∑
l=l0+1

(Pl − Pl−1)Ar1nl,ω(f̄ , u0)

= Aω(f̄ , u0). (181)

We put
K0 = {(f̄ , u0) : (f, u0) ∈ F}.

Then Proposition 3.1 gives

K0 ⊆ F r,%([a, b]× C(Q,Z), C(Q,Z);κ1, L1, σ, λ1)

∩ F r1,%1([a, b]× Cr0(Q,Z), Cr0(Q,Z);κ1, L1, σ, λ1). (182)

Furthermore, (137), (147–148), (170), (178), and (182) show that the assumptions
of Proposition 2.3 are fulfilled. Therefore (31) of Proposition 2.3 together with
(61), (138), and (181) prove (125). The estimate (126) follows from (32) of
Proposition 2.3 together with (61), (138), (177), and (181).

5 Complexity

We work in the setting of information-based complexity theory, as discussed in
[29, 27]. For details on the notions used here we refer to [13, 14]. An abstract
numerical problem is described by a tuple P = (F,G, S,K,Λ). The set F is the
set of input data, in our case F = F , G is a normed linear space and S : F → G
an (in general nonlinear) operator, the solution operator, which maps the input
ψ ∈ F to the exact solution S(ψ). In our case we have G = B(Q× [a, b], Z) and
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S = S . Furthermore, K is a nonempty set and Λ a set of mappings from F to
K, the set of information functionals. In our case K is Z and Λ is given by

Λ = {δs,t,z : s ∈ Q, t ∈ [a, b], z ∈ Z} ∪ {δs : s ∈ Q}, (183)

where for (f, u0) ∈ F

δs,t,z(f, u0) = f(s, t, z), δs(f, u0) = u0(s). (184)

So the admissible information is Z-valued and consists of values of f and u0.
Below edet

n (S ,F ) and eran
n (S ,F ) denote the n-th minimal error of S on

F in the deterministic, respectively randomized setting, that is, the minimal
possible error among all deterministic, respectively randomized algorithms, that
use at most n information functionals.

The following theorem, which is the main result of this paper, gives almost
sharp estimates of the deterministic and randomized minimal errors and hence,
of the complexity of the parametric initial value problem. Moreover, combined
with Corollary 4.3, it shows that the upper bounds are realized by the multilevel
algorithm presented before, more precisely, in the deterministic case by Aω for
any ω ∈ Ω, and in the randomized case, by (Aω)ω∈Ω, with parameters chosen
in an appropriate way. Concerning the assumption r + % ≥ r1 + %1, we refer to
Remark 4.2.

Theorem 5.1. Let r0, r, r1 ∈ N0, 0 ≤ %, %1 ≤ 1, with r + % ≥ r1 + %1, κ, L :
(0,+∞)→ (0,+∞), and σ, λ > 0, where we assume that

κ0 := inf
0<R<+∞

κ(R) > 0. (185)

Let Z be a Banach space, and let F be defined by (57–59). Then in the deter-
ministic setting,

n−υ1 � edet
n (S ,F ) �log n

−υ1 , (186)

where υ1 was defined in (131).
Moreover, let 1 ≤ p ≤ 2 and assume that Z is of type p. Let pZ denote the

supremum of all p1 such that Z is of type p1. Then in the randomized setting,

n−υ2(pZ) � eran
n (S ,F ) �log n

−υ2(p), (187)

with υ2 given by (133).

It is readily seen from (133) that υ2(p) is a continuous, monotonically increas-
ing function of p ∈ [1, 2]. It follows that the bounds in the randomized case of
Theorem 5.1 are matching up to an arbitrarily small gap in the exponent. Un-
der additional assumptions, upper and lower bounds are of the same order up to
logarithmic factors.
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Corollary 5.2. Assume that the conditions of Theorem 5.1 hold. Let pZ be the
supremum of all p1 such that Z is of type p1. Then for each ε > 0

n−υ2(pZ) � eran
n (S ,F ) � n−υ2(pZ)+ε.

If, moreover, the supremum of types is attained, that is, Z is of type pZ, then

n−υ2(pZ) � eran
n (S ,F ) �log n

−υ2(pZ).

The latter assumption is satisfied, in particular, by spaces of type 2 and, if 1 ≤
p1 <∞, by spaces X = Lp1(M,µ), where (M,µ) is some measure space.

Proof of Theorem 5.1. The upper bounds follow from Corollary 4.3. To show the
lower bounds, let S0 : C(Q×[a, b], Z)→ B(Q,Z) be given for f ∈ C(Q×[a, b], Z)
by

(S0f)(s) =

∫ b

a

f(s, t)dt (s ∈ Q).

This is the operator of Z-valued definite parametric integration, with a one-
dimensional integration domain. Define

V1 : C(Q× [a, b], Z)→ C(Q× [a, b], Z)× C(Q,Z)

for f ∈ C(Q× [a, b], Z) by

V1f = (f, 0) (188)

and
V2 : B(Q× [a, b], Z)→ B(Q,Z)

for g ∈ B(Q× [a, b], Z) by

(V2g)(s) = g(s, b) (s ∈ Q).

Then we have
‖V2‖ = 1. (189)

For f ∈ C(Q × [a, b], Z) (considering functions on Q × [a, b] as functions on
Q× [a, b]× Z not depending on z ∈ Z) the solution u = S (f, 0) of

d

dt
u(s, t) = f(s, t) (s ∈ Q, t ∈ [a, b])

u(s, a) = 0 (s ∈ Q)

is

u(s, t) =

∫ t

a

f(s, τ)dτ.

Consequently,
S0 = V2 ◦S ◦ V1. (190)
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Moreover, if f satisfies

‖f‖C(Q×[a,b],Z) ≤ (b− a)−1λ, (191)

then
sup

s∈Q,t∈[a,b]

‖u(s, t)‖ ≤ λ. (192)

Furthermore, according to (12–14), for n ∈ N, ω ∈ Ω, s ∈ Q we have A0
n,ω(fs, 0) =

v(s, · ) with

v(s, t) =

{
pk,0(s, t) if t ∈ [tk, tk+1), 0 ≤ k ≤ n− 1,
un(s) if t = tn,

u0(s) = 0, and for 0 ≤ k ≤ n− 1, t ∈ [tk, tk+1]

pk,0(s, t) = uk(s) + (t− tk)f(s, tk)

uk+1(s) = uk(s) + hf(s, ξk+1).

So (191) also implies

sup
s∈Q

∥∥A0
n,ω(fs, 0)

∥∥
B([a,b],Z)

≤ λ. (193)

Let ϕ0 be a C∞ function on Rd0 with support in Q and sups∈Q |ϕ0(s)| =

σ0 > 0, and let m0 ∈ N. We divide the cube Q into md0
0 congruent subcubes

Qi (i = 1, . . . ,md0
0 ) of disjoint interior. Let si be the point in Qi with minimal

Euclidean norm and define

ϕ0,i(s) = ϕ0(m0(s− si)) (s ∈ Q, i = 1, . . . ,md0
0 ).

Furthermore, let ϕ1 be a C∞ function on R with support in [a, b] and
∣∣ ∫ b

a
ϕ1(t)dt

∣∣ =
σ1 > 0. For m1 ∈ N we let tj = a+ j(b− a)/m1 and

ϕ1,j(t) = ϕ1(a+m1(t− tj)) (t ∈ [a, b], j = 0, . . . ,m1 − 1).

Finally, let (zj)
m1−1
j=0 ⊂ BZ be any sequence (to be specified later on) and define

ψij(s, t) = ϕ0,i(s)ϕ1,j(t)zj.

Denote Im0,m1 = {1, . . . ,md0
0 } × {0, . . . ,m1 − 1} and set

Ψ0
m0,m1

=

 ∑
(i,j)∈Im0,m1

δijψij : δij ∈ [−1, 1], (i, j) ∈ Im0,m1

 . (194)
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Taking into account (185), we observe that there is a constant c0 > 0 such that
for all m0,m1 ∈ N,

c0m
−r−%
1 Ψ0

m0,m1
⊆ C 0,r,%

Lip (Q× [a, b]× Z,Z;κ, L) (195)

c0m
−r0
0 m−r1−%11 Ψ0

m0,m1
⊆ C r0,r1,%1

Lip (Q× [a, b]× Z,Z;κ, L) (196)

c0Ψ0
m0,m1

⊆ (b− a)−1λBC(Q×[a,b],Z). (197)

We put

Ψm0,m1 = c0 min
(
m−r−%1 ,m−r00 m−r1−%11

)
Ψ0
m0,m1

, (198)

thus, by (195–197)

Ψm0,m1 ⊆ C 0,r,%
Lip (Q× [a, b]× Z,Z;κ, L)

∩ C r0,r1,%1
Lip (Q× [a, b]× Z,Z;κ, L) (199)

Ψm0,m1 ⊆ (b− a)−1λBC(Q×[a,b],Z). (200)

Using (199–200) and (191–193), it follows that for all m0,m1 ∈ N,

V1 (Ψm0,m1) ⊆ F . (201)

We put K0 = Z and consider the following class of information functionals on
C(Q× [a, b], Z)

Λ0 = {δs,t : s ∈ Q, t ∈ [a, b]}, δs,t(f) = f(s, t). (202)

We conclude from (190) and (201) that the problem

(S0,Ψm0,m1 , B(Q,Z), Z,Λ0)

reduces to
(S ,F , B(Q× [a, b], Z), Z,Λ)

(see Section 3 of [14]). Consequently, by (189), for all n,m0,m1 ∈ N

eset
n (S ,F ) ≥ eset

n (S0,Ψm0,m1), (203)

where set ∈ {det, ran}. Moreover, by linearity and (198),

eset
n (S0,Ψm0,m1) = c0 min

(
m−r−%1 ,m−r00 m−r1−%11

)
eset
n (S0,Ψ

0
m0,m1

). (204)

For all δij ∈ R ((i, j) ∈ Im0,m1) we have∥∥∥∥∥S0

∑
(i,j)∈Im0,m1

δijψij

∥∥∥∥∥
B(Q,Z)

=

∥∥∥∥∥ ∑
(i,j)∈Im0,m1

δijϕ0,izj

∫ b

a

ϕ1,j(t)dt

∥∥∥∥∥
B(Q,Z)

= σ0σ1m
−1
1 max

1≤i≤md00

∥∥∥∥∥
m1−1∑
j=0

δijzj

∥∥∥∥∥. (205)
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Now we prove the lower bounds in the deterministic setting. Here we take
any w0 ∈ Z with ‖w0‖ = 1 and set zj = w0 (j = 0, . . . ,m1 − 1). Using standard
results, see [29], Ch. 4.5, as well as (205), we obtain

edet
n (S0,Ψ

0
m0,m1

)

≥ min
I⊆Im0,m1 , |I |≥m

d0
0 m1−n

∥∥∥S0

∑
(i,j)∈I

ψij

∥∥∥
≥ σ0σ1m

−1
1 min

I⊆Im0,m1 , |I |≥m
d0
0 m1−n

max
1≤i≤md00

|{j : (i, j) ∈ I }| ≥ c, (206)

provided md0
0 m1 ≥ 2n. If r0/d0 > r1 + %1, we set

m0 =
⌈
2n

r+%−r1−%1
r0+(r+%−r1−%1)d0

⌉
, m1 =

⌈
n

r0
r0+(r+%−r1−%1)d0

⌉
and get from (203–204), (206), and (131)

edet
n (S ,F ) ≥ cmin

(
m−r−%1 ,m−r00 m−r1−%11

)
≥ cn

− r0(r+%)
r0+(r+%−r1−%1)d0 = cn−υ1 .

If r0/d0 ≤ r1 + %1, we put m0 =
⌈
2n1/d0

⌉
, m1 = 1, and derive similarly

edet
n (S ,F ) ≥ cn

− r0
d0 = cn−υ1 ,

which proves the lower bound in (186).
Finally we consider the randomized setting. Lemma 5 and 6 of [13] with

K = Z (Lemma 6 is formulated for K = R, but is easily seen to hold also for
K = Z) give

eran
n (S0,Ψ

0
m0,m1

) ≥ 1

4
min

I⊆Im0,m1 , |I |≥m
d0
0 m1−4n

E
∥∥∥S0

∑
(i,j)∈I

εijψij

∥∥∥
with {εij : (i, j) ∈ Im0,m1} being independent Bernoulli random variables with
P{εij = −1} = P{εij = +1} = 1/2. Using (205), we conclude for md0

0 m1 ≥ 8n

eran
n (S0,Ψ

0
m0,m1

)

≥ σ0σ1

4m1

min
I⊆Im0,m1 , |I |≥m

d0
0 m1−4n

E max
1≤i≤md00

∥∥∥∥∥ ∑
j: (i,j)∈I

εijzj

∥∥∥∥∥
≥ σ0σ1

4m1

min
I⊆Im0,m1 , |I |≥m

d0
0 m1−4n

max
1≤i≤md00

E

∥∥∥∥∥ ∑
j: (i,j)∈I

εijzj

∥∥∥∥∥. (207)

Now we distinguish between two cases. If pZ = 2, we use the same choice zj = w0

as in the deterministic setting. Then by Khintchine’s inequality, see [24], Th.
2.b.3,

E

∥∥∥∥∥ ∑
j: (i,j)∈I

εijzj

∥∥∥∥∥ ≥ c |{j : (i, j) ∈ I }|1/2 . (208)
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If pZ < 2, Z must be infinite dimensional, because a finite dimensional space Z
always satisfies pZ = 2. By the Maurey-Pisier Theorem (see [26], Th. 2.3), there
is a sequence (wj)

m1−1
j=0 ⊂ Z such that for all (δj)

m1−1
j=0 ⊂ R

1

2

(
m1−1∑
j=0

|δj|pZ
)1/pZ

≤

∥∥∥∥∥
m1−1∑
j=0

δjwj

∥∥∥∥∥ ≤
(
m1−1∑
j=0

|δj|pZ
)1/pZ

.

Setting zj = wj (j = 0, . . . ,m1 − 1), we get

E
∥∥∥ ∑
j: (i,j)∈I

εijzj

∥∥∥ ≥ 1

2
|{j : (i, j) ∈ I }|1/pZ . (209)

Assuming md0
0 m1 ≥ 8n, we obtain from (207–209) for both cases

eran
n (S0,Ψ

0
m0,m1

)

≥ cm−1
1 min

I⊆Im0,m1 , |I |≥m
d0
0 m1−4n

max
1≤i≤md00

|{j : (i, j) ∈ I }|1/pZ

≥ cm
−1+1/pZ
1 . (210)

Combining (203), (204), and (210), it follows that for md0
0 m1 ≥ 8n

eran
n (S ,F ) ≥ cm

−1+1/pZ
1 min

(
m−r−%1 ,m−r00 m−r1−%11

)
. (211)

If r0/d0 > r1 + %1 + 1− 1/pZ , we define

m0 =
⌈
8n

r+%−r1−%1
r0+(r+%−r1−%1)d0

⌉
, m1 =

⌈
n

r0
r0+(r+%−r1−%1)d0

⌉
,

which together with (211) and (133) gives

eran
n (S ,F ) ≥ cn

− r0(r+%+1−1/pZ )

r0+(r+%−r1−%1)d0 = cn−υ2(pZ).

If r0/d0 ≤ r1 + %1 + 1− 1/pZ , we set m0 =
⌈
8n1/d0

⌉
, m1 = 1, and get from (211)

and (133)

eran
n (S ,F ) ≥ cn

− r0
d0 = cn−υ2(pZ),

which shows the lower bound in (187).

6 Special classes of functions

First let us consider the case of globally bounded functions. Here we have κ ≡ κ0

and L ≡ L0 with κ0, L0 ∈ R, κ0, L0 > 0. Then

F =
(
C 0,r,%

Lip (Q× [a, b]× Z,Z;κ0, L0) ∩ C r0,r1,%1
Lip (Q× [a, b]× Z,Z;κ0, L0)

)
×σBCr0 (Q,Z),
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provided the constant λ involved in the definition (57–59) of F satisfies

λ ≥ σ + κ0(b− a). (212)

In other words, for globally bounded classes conditions (58) and (59) are auto-
matically fulfilled whenever (212) holds.

Next let us consider the case of linear equations and see how it fits the class
F . For κ0 > 0 let Cr0,r,%(Q × [a, b], Z;κ0) denote the subset of all functions in
C r0,r,%(Q× [a, b]× Z,Z;κ0) which do not depend on z ∈ Z. Given κ0, κ1, σ > 0,
let G be the set of all pairs (f, u0) with u0 ∈ σBCr0 (Q,Z) and f : Q× [a, b]×Z → Z
of the form

f(s, t, z) = g0(s, t) + g1(s, t)z (213)

with

g0 ∈ C0,r,%(Q× [a, b], Z;κ0) ∩ Cr0,r1,%1(Q× [a, b], Z;κ0) (214)

g1 ∈ C0,r,%(Q× [a, b],L (Z);κ1) ∩ Cr0,r1,%1(Q× [a, b],L (Z);κ1). (215)

This means we consider the linear equation

d

dt
u(s, t) = g0(s, t) + g1(s, t)u(s, t) (216)

u(s, a) = u0(s). (217)

Corollary 6.1. Let r0, r, r1 ∈ N0, 0 ≤ %, %1 ≤ 1, with r+% ≥ r1+%1, κ0, κ1, σ > 0.
Then there exist κ, L : (0,+∞)→ (0,+∞) and λ > 0 such that

G ⊆ F (218)

where G is defined in (213–215) and F in (57–59), and the statements of Theorem
5.1 hold with F replaced by G .

Proof. It is easily checked that

G ⊆
(
C 0,r,%

Lip (Q× [a, b]× Z,Z;κ, L)

∩ C r0,r1,%1
Lip (Q× [a, b]× Z,Z;κ, L)

)
× σBCr0 (Q,Z)

for suitable κ, L. Thus, it remains to verify (58–59). Since f is Lipschitz with
constant κ1, the solution of (216–217) exists on [a, b] and is unique. Integrating
with respect to t we get

u(s, t) = u0(s) +

∫ t

a

(g0(s, τ) + g1(s, τ)u(s, τ)) dτ,

consequently, for t ∈ [a, b]

‖u( · , t)‖B(Q,Z) ≤ σ + (b− a)κ0 + κ1

∫ t

a

‖u( · , τ)‖B(Q,Z) dτ,
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which, by Gronwall’s lemma, gives

‖u‖B(Q×[a,b],Z) ≤ (σ + (b− a)κ0)eκ1(b−a).

By (12–14) we have A0
n,ω(fs, u0(s)) = v(s, · ), where

v(s, t) =

{
pk,0(s, t) if t ∈ [tk, tk+1) and 0 ≤ k ≤ n− 1,
un(s) if t = tn,

and for 0 ≤ k ≤ n− 1, t ∈ [tk, tk+1]

pk,0(s, t) = uk(s) + (t− tk)g0(s, tk) + (t− tk)g1(s, tk)uk(s) (219)

uk+1(s) = uk(s) + hg0

(
s, ξk+1

)
+ hg1

(
s, ξk+1

)
pk,0(s, ξk+1). (220)

Inserting (219) with t = ξk+1 into (220), we get

uk+1(s) = uk(s) + hg0

(
s, ξk+1

)
+ h(ξk+1 − tk)g1

(
s, ξk+1

)
g0(s, tk)

+hg1

(
s, ξk+1

)
uk(s) + h(ξk+1 − tk)g1

(
s, ξk+1

)
g1(s, tk)uk(s),

thus with c0 = κ0(1 + hκ1), c1 = κ1(1 + hκ1)

‖uk+1‖B(Q,Z) ≤ (1 + c1h) ‖uk‖B(Q,Z) + c0h.

Using ‖u0‖B(Q,Z) ≤ σ, we obtain for 1 ≤ k ≤ n

‖uk‖B(Q,Z) ≤ σ(1 + c1h)k + c0h
k−1∑
j=0

(1 + c1h)j

≤ (σ + c0/c1)(1 + c1h)n ≤ (σ + κ0/κ1)ec1(b−a)

≤ (σ + κ0/κ1) eκ1(1+(b−a)κ1)(b−a).

Together with (219) this implies

max
0≤k≤n−1

max
t∈[tk,tk+1]

‖pk,0( · , t)‖B(Q,Z)

≤ (1 + (b− a)κ1)(σ + κ0/κ1)eκ1(1+(b−a)κ1)(b−a) + (b− a)κ0

and hence the desired result (218), which, in turn, implies the upper bound.
That the lower bounds of Theorem 5.1 also hold for G follows directly from

the proof of Theorem 5.1 and the fact that G contains all pairs (f, 0) with

f = g0 ∈ C0,r,%(Q× [a, b], Z;κ0) ∩ Cr0,r1,%1(Q× [a, b], Z;κ0).
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Now let us motivate the choice of the smoothness for the class F in (57–
59). This is best explained when looking at the subset of those functions f
which depend only on s and t. Then the parameters r0, r, r1, %, %1 describe the
smoothness of f(s, t) and we arrive for Z = R at classes analogous to those
studied in [6] (so we also refer to the discussion in Section 5 of that paper).

The smoothness we imposed with respect to z can be considered as chosen in
a ’complementary’ way. By this we mean the following. As we showed in Section
5, the complexity only mildly depends on the smoothness in z in the sense that
increasing this smoothness does not result in a higher rate of the minimal errors.
In fact, even if f does not depend on z at all, we get the same rate. Therefore, with
the smoothness parameters r0, r, r1, %, %1 set for s and t, the smoothness in z has
been chosen in such a way that it just guarantees the respective convergence rate.
(Of course, a challenging problem is to find minimal smoothness requirements in
z still ensuring the same rate. We do not pursue this aspect here.)

The class C r0,r,%
Lip (Q × [a, b] × Z,Z;κ, L) consists of functions with a certain

type of dominating mixed smoothness. We have chosen F to be given by an
intersection of two such classes, because this way we can also include isotropic
smoothness and certain anisotropic analogues thereof. Let us look at these special
cases in some more detail. For the subsequent discussion we assume, for the sake
of simplicity, that Z is of type 2, which includes, in particular, the case of finite
systems of scalar equations Z = Rd.

First we consider the case r = r1, % = %1. Then F is the set of all

(f, u0) ∈ C r0,r,%
Lip (Q× [a, b]× Z,Z;κ, L)× σBCr0 (Q,Z)

satisfying (58) and, if r = % = 0, (59). Thus, the involved functions f have
dominating mixed smoothness. From Theorem 5.1 we obtain

Corollary 6.2. Let r0, r ∈ N0, 0 ≤ % ≤ 1, r = r1, % = %1, assume that (185)
holds and that Z is of type 2. Then

edet
n (S ,F ) �log n

−min
“
r+%,

r0
d0

”

eran
n (S ,F ) �log n

−min
“
r+%+ 1

2
,
r0
d0

”
.

Hence, if r0/d0 ≤ r+%, the rates are the same. If r0/d0 > r+%, the best rate of
randomized algorithms is superior to that of deterministic algorithms. If r0/d0 ≥
r+%+ 1

2
, the best randomized algorithms outperform the best deterministic ones

by an order of n−1/2. This is particularly important if, e.g., r = 0 and % is small.
Then the deterministic rate n−% is slow (for % = 0, there is no convergence rate
at all), while in the randomized setting we still have at least n−1/2.

Next we assume r1 = %1 = 0, which means that F is the set of

(f, u0) ∈
(
C 0,r,%

Lip (Q× [a, b]× Z,Z;κ, L)

∩ C r0,0,0
Lip (Q× [a, b]× Z,Z;κ, L)

)
× σBCr0 (Q,Z) (221)
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fulfilling (58) and, if r = % = 0, (59), so that here the functions f have smoothness
in s and t separately. In this case Theorem 5.1 yields

Corollary 6.3. Let r0, r ∈ N0, 0 ≤ % ≤ 1, r1 = %1 = 0, suppose (185) holds and
Z is of type 2. Then

edet
n (S ,F ) �log n−υ1

eran
n (S ,F ) �log n−υ2 ,

where

υ1 =

 0 if r0 = 0
r0
d0

r0
d0

+r+%
(r + %) otherwise

(222)

υ2 =


r0
d0

r0
d0

+r+%

(
r + %+ 1

2

)
if r0

d0
≥ 1

2

r0
d0

if r0
d0
< 1

2
.

(223)

Except for the trivial case r0 = 0, the randomized setting is always superior
to the deterministic one, although the maximum of improvement n−1/2 is only
reached if r = % = 0 and r0/d0 ≥ 1/2 (this case, in fact, has already been
considered above).

Next we keep the restriction r1 = %1 = 0 and assume also % = 0. In this case
we want to identify certain subclasses of F . Let r2 ∈ N0 and let C [r0,r,r2](Q ×
[a, b]×Z,Z;κ) be the space of continuous functions f : Q× [a, b]×Z → Z having
for all α = (α0, α1, α2) ∈ N3

0 with

α0

r0

+
α1

r
+
α2

r2

≤ 1 (224)

(we interpret 0
0

= 0 and τ
0

= +∞ if τ > 0) continuous partial derivatives
∂|α|f(s,t,z)

∂sα0∂tα1∂zα2
such that for R > 0, s ∈ Q, t ∈ [a, b], z ∈ RBZ∥∥∥∥ ∂|α|f(s, t, z)

∂sα0∂tα1∂zα2

∥∥∥∥
Lα0,α2 (Rd0 ,Z,Z)

≤ κ(R).

If r0 = r2 = r, then this is just isotropic Cr-smoothness. Furthermore, if r2 ≥
r0, we let C [r0,r,r2]

Lip (Q × [a, b] × Z,Z;κ, L) be the subset consisting of those f ∈
C [r0,r,r2]

Lip (Q× [a, b]× Z,Z;κ) which satisfy the Lipschitz conditions∥∥∥∥∂|α|f(s, t, z1)

∂sα0∂zα2
− ∂|α|f(s, t, z2)

∂sα0∂zα2

∥∥∥∥
Lα0,α2 (Rd0 ,Z,Z)

≤ L(R)‖z1 − z2‖

for α0 + α2 ≤ r0, R > 0, s ∈ Q, t ∈ [a, b], z1, z2 ∈ RBZ . Finally, we let H be the
set of all

(f, u0) ∈ C [r0,r,r2]
Lip (Q× [a, b]× Z,Z;κ, L)× σBCr(Q,Z)
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satisfying (58) and, if r = 0, (59). Considering the class F with r1 = %1 = % = 0
and taking into account (221), it follows that for all r2 ≥ max(r0, r)

H ⊆ F . (225)

Corollary 6.4. Let r0, r, r2 ∈ N0, r2 ≥ max(r0, r), assume that (185) holds and
that Z is of type 2. Then for any M with H ⊆M ⊆ F

edet
n (S ,M ) �log n−υ1

eran
n (S ,M ) �log n−υ2 ,

where υ1 and υ2 are as in (222–223), with % = 0. In particular, if r0 = r > 0, υ1

and υ2 take the form

υ1 =
r

d0 + 1
, υ2 =


r+ 1

2

d0+1
if r

d0
≥ 1

2

r
d0

if r
d0
< 1

2
.

(226)

Proof. The upper bounds follow from (225) and Corollary 6.3. Let us show the
lower bounds. We use the notation from the proof of Theorem 5.1. There is a
constant c0 > 0 such that for all m0,m1 ∈ N, ψ ∈ Ψ0

m0,m1

‖ψ‖C[r0,r,r2](Q×[a,b]×Z,Z)

≤ c0 max

{
mα0

0 m
α1
1 : α0, α1 ∈ N0,

α0

r0

+
α1

r
≤ 1

}
= c0 max

{(
mr0

0

)α0
r0

(
mr

1

)α1
r : α0, α1 ∈ N0,

α0

r0

+
α1

r
≤ 1

}
≤ c0 max (mr0

0 ,m
r
1) .

Setting

Ψm0,m1 = min
(
κ0, (b− a)−1λ

)
c−1

0 min(m−r00 ,m−r1 ) Ψ0
m0,m1

,

it follows that

Ψm0,m1 ⊆ C [r0,r,r2]
Lip (Q× [a, b]× Z,Z;κ, L)

Ψm0,m1 ⊆ (b− a)−1λBC(Q×[a,b],Z)

and therefore, by (192) and (193), for all m0,m1 ∈ N

V1 (Ψm0,m1) ⊆ H ⊆M ,

where V1 is defined in (188). Now the same argument as used in the proof of
Theorem 5.1 (with r1 = %1 = % = 0) gives the lower bounds.
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As we already discussed above in regard to F , also here the rate does not
depend on the smoothness r2 of f in the variable z. We observe that by (226), for
r0 = r and in particular in the isotropic case r0 = r2 = r, the maximal speedup
of randomized algorithms over deterministic ones is n−1/4, reached for d0 = 1,
r ≥ 1.

Finite systems of d scalar ODEs are included in our analysis by setting Z = `d2.
Letting F∞ stand for F with Z = `2(N) and denoting the classes F for Z = `d2
by Fd (all with the same dimension of the parameter space d0 and with the same
constants κ, L, σ, λ), it is easily shown that Fd can be embedded into F∞ in a
uniform way. This shows, in particular, that the error estimates of the algorithm,
see Corollary 4.3, hold with constants which are independent of the dimension d
of the system. Taking into account that an `d2-valued information functional is
equivalent to d scalar-valued information functionals, it follows that the family
(Fd)d∈N is polynomially tractable in the randomized setting if r0 > 0 and in the
deterministic setting if r0 > 0 and r + % > 0. We refer to [28] for the notion of
tractability and more on this direction of research.

In the present paper we did not strive for the best estimates in terms of the
involved powers of logarithmic factors, as already made clear in Remark 4.4, since
for general Banach spaces even the exponent is only known up to an arbitrary
small ε > 0. We also left out the question of ODEs defined in bounded domains,
since in general Banach spaces standard localization methods do not work due
to the non-existence of smooth bump functions, see [9]. Both topics – bounded
domains and sharp asymptotic estimates – will be covered in a subsequent paper
[7] for the case of Z being a Hilbert space, including this way finite scalar systems.
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