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Abstract

We study the complexity of stochastic integration with respect to an isonormal process
defined on a bounded Lipschitz domain Q C R%. We consider integration of functions from
Sobolev spaces W (Q) and analyze the complexity in the deterministic and randomized
setting. Matching upper and lower bounds for the n-th minimal error are established,
this way determining the complexity of the problem. It turns out that the stochastic
integration problem is closely related to approximation of the embedding of W (Q) into

Ly (Q).

1 Introduction

Let @ C R? be a bounded Lipschitz domain and let Wg be an isonormal process on Ly(Q).
We study the complexity of pathwise approximation of the stochastic integral | 0 f(x)dWg(x).
Here f is a function from some Sobolev space W} (Q) (embedded in Ly(Q)). We determine the
complexity in various settings.

On the way to this main result we first review the general approach of information-based
complexity theory (IBC) to stochastic problems, introduced in [7]. We complement it by
considering besides adaptive deterministic and randomized algorithms a third setting — that of
semi-adaptive algorithms, which turns out to be much closer to the deterministic setting for
deterministic problems than the larger class of adaptive deterministic algorithms. We prove
some new general results, in particular by exploiting the connection to deterministic problems
in both the deterministic and randomized settings. It turns out that the stochastic integration
problem is closely related to approximation of the embedding of the respective function space
into Ls(Q). Furthermore, lower bounds for stochastic integration in general function classes on
(@ are proved. Finally, the complexity for Sobolev classes is determined in all three settings.
We also treat the case of Slobodeckij spaces. Algorithms and error estimates for some of the
latter were obtained by Eisenmann and Kruse [3]. Our results provide matching lower bounds.
Our methods are extensions of those from [7] and [6].

The complexity of stochastic integration of functions on finite intervals in R was investigated
in [22], [8], [15], [16]. We also mention related work on the complexity of stochastic differential
equations [9, 10]. In the present paper the complexity of stochastic integration with respect to
a d-dimensionally indexed stochastic process is considered for the first time. In particular, for
Q = [0, 1]¢, our study includes the integral with respect to the Wiener sheet measure.
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The paper is organized as follows. In Section 2 we review and enlarge the general theory,
in Section 3 the needed previous results for deterministic problems in the randomized setting
are stated. Section 4 contains new results on the general theory, while stochastic integration
for arbitrary subsets of Ly(@Q) is studied in Section 5. The final Section 6 contains the main
result about Sobolev classes and an analogous statement for Slobodeckij spaces.

Let N={1,2,...} and Ny = {0,1,2,... }. The unit ball of a Banach space X is denoted by
Bx. We often use the same symbol ¢, ¢y, ... for possibly different positive constants (also when
they appear in a sequence of relations). For sequences a,,b, > 0 (n € N) we write a,, < b, if
there are constants ng € N and ¢ > 0 such that a, < ¢b, for all n > ng. Moreover, a, = b,
stands for b,, < a,,, while a,, < b,, means that both a, < b, and b, < a,, hold.

2 Preliminaries: A general setting of IBC for stochastic
problems

In this section we recall the IBC approach to stochastic problems from [7]. An abstract stochas-
tic numerical problem & is given as

P = (F, (0, S,P),G, S, K, A). (1)

Here F' is a non-empty set, (2, X, P) a probability space, G a Banach space and S is a mapping
F x Q — G. The operator S is called the solution operator, it sends the input (f,w) € F' x Q
of our problem to the exact solution S(f,w). Moreover, A is a nonempty set of mappings from
F xQ to K, the set of information functionals, where K is any nonempty set - the set of values
of information functionals.

We assume that for each f € F the mapping w — S(f,w) is X-to-Borel-measurable and
P-almost surely separably valued, i.e., for each f € F' there is a separable subspace Gy of G
such that P{w : S(f,w) € Gy} = 1.

An (adaptive) deterministic algorithm for & is a tuple A = ((L;)24, (1:)520, (¢:)32,) such
that Ly € A, 70 € {0,1}, ¢ € G, and for i € N

Ly K'—= A, 7:K' —1{0,1}, ¢:K =G (2)
are arbitrary mappings. Given an input (f,w) € F' x €, we define (\;)$2; with A\; € A as follows:
)\1 :L17 Az:Lz()\l(faw)a7)\1—1(f7w)) (122) (3)

Define card(A, f,w), the cardinality of A at input (f,w), to be 0 if 7 = 1. If 75 = 0, let
card(A, f,w) be the first integer n > 1 with 7,(A(f,w), ..., A\u(f,w)) = 1 if there is such an
n. If 7o = 0 and no such n € N exists, put card(A, f,w) = +o0o. Observe that we have the
following alternative: Either

card(A4, f,w) =0 for all (f,w) € F xQ or card(A, f,w)>1forall (f,w)e FxQ. (4
We define the output A(f,w) of algorithm A at input (f,w) as

%0 if C&I‘d(A, f’ w) € {Oa OO}

Al = { paM(fo0), o A(fow)) i 1< card(A, fow) = n < oo, ?



Define k* = K and K° = {k*}. (This is a technical definition which guarantees that K is a
one-element set whose element does not belong to any K* for ¢ > 1.) Let K* = UX,K* and
define a mapping, the information operator, N : F' x Q — K as

k* e K° if card(A, f,w 0, 00
0 _{ € (A, f,w) € {0,00} ©)

M(f,w), ..., \(fiw)) € K™ if 1 <card(A4, f,w) =n < oo.

Furthermore, define a mapping ¢ : K — G by setting for a € K*°

Yo if a=Fk"
= 7
#la) { onlay, ... a,) if a=(ay,...,a,) € K", neN. 0

This gives a convenient representation A = ¢ o N, that is,

A(f,w) = o(N(f,w)) ((f,w) € F x Q). (8)

Given n € Ny, we define &79( %) as the set of those deterministic algorithms A for &
with the following properties: For each f € F' the mapping w — card(A, f,w) is ¥-measurable,
E card(A, f,w) < n, and the mapping w — A(f,w) € G is X-to-Borel-measurable and P-almost
surely separably valued. The cardinality of A € &74¢%(2) is defined as

card(A, F x Q) = supEcard(A, f,w),
feF

the error of A in approximating S as

e(S, A F xQ,G)=supE||S(f,w) — A(f,w)|la

fer

and the deterministic n-th minimal error of S is defined for n € Ny as

NS FxQ,G)= inf e(S,AF xQG). (9)
Acadet(P)

A randomized algorithm for & is a tuple A = ((Q1, X1, P1), (Au,)weq,), where (21, %, Py)
is another probability space and for each wy; € €, A,, is a deterministic algorithm for &.
Let n € Ny. Then /(%) stands for the class of randomized algorithms A for & with
the following properties: For each f € F the mapping (wi,w) — card(Ay,, f,w) is X1 x X-
measurable,

Ep, «p card(A,,, f,w) < n,

and the mapping (wy,w) — A, (f,w) is 1 X X-to-Borel-measurable and P; x P-almost surely
separably valued. We define the cardinality of A € &/ (Z) as

card(A) = sup Ep, wp card(A,,, f,w),

fer

the error as
G(S,A,F X Qv G) = iugEEXPHS(f: w) - Awl(f,W)HG
€

and the randomized n-th minimal error of S as

(S, Fx0G) = inf e(S,AF xQ,G).

A€ /ran ()
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Considering trivial one-point probability spaces € = {w;} immediately yields
(S, F x Q,G) < ed(S F xQ,Q). (10)

By definition (3), deterministic algorithms can use the intrinsic randomness of the stochastic
problem, so the choice of information about f may depend on w, in general. Therefore in some
concrete cases, including the stochastic integration problems considered here, deterministic
algorithms can simulate randomized ones by using the additional randomness in the problem
(see, e.g., the proof of Lemma 5.2). This leads to the same rates for deterministic and stochastic
minimal errors. We want to single out a class of algorithms where this is not the case, that is,
the information collected about f € I does not depend on w. This class is much closer to the
class of deterministic algorithms for deterministic problems than the class above. There are
some interesting lower bounds statements connected with this class, see (50), (77), and (78).

First let us formalize this notion. For this purpose let A C A be the subset of all A € A
which depend only on f € F', precisely,

AF = {)\ eN: )\(f,wl) = )\(f7w2) for all f S F,wl,ng S Q},

and correspondingly, Aq C A the set of all those A € A which depend only on w € Q. A
deterministic algorithm A = ((L;)52,, (1:)520, (¢:)32,) is called semi-adaptive, if the following
hold. There is a sequence (0;)32, with oy € {0,1} and o; : K' — {0,1} (: € N) being any
mappings satisfying o; > 7;. In analogy to the cardinality above we define cardp(A, f,w) for
(f,w) € F xQ to be0if op = 1, while if o9 = 0, we let cardp(A, f,w) be the first integer
m € N with o,,( A (f,w), ..., An(f,w)) = 1 (with the A; given by (3)), if there is such an m. If
no such m € N exists, set cardg(A, f,w) = co. Then for all f and w the following has to be

satisfied for i € N.
e Ap it i <cardp(A, f,w)
‘ Aq if i > cardp(A, f,w).

This concludes the definition of a semi-adaptive algorithm. First note that cardg(A, f,w) does
not depend on w, so we write cardp(A, f) instead. Similarly, A\;(f,w) = N(f) (1 <7 < m).
Also observe that we always have

cardp(A, f) < card(A, f,w)

for all f and w. It follows that

sup cardp (A, f) < supEcard(A, f,w) = card(A, F). (11)
feF feF
We put
|k eK° if cardp(A,f)=0 or cardp(A4,f) =00 -
()= (A (f), .., Am(f)) € K™ if 1 <cardp(A, f,w) =m < oc. (12)

So such an algorithm first collects information about f, which does not depend on w, but
otherwise may be adaptive: Nj(f). After that information about w is collected, which may
depend on the previously computed values of f. Recalling (6)—(8), we note that for f,g € F
with N1(f) = Ni(g) we have

N(f,w) = N(g,w), thus A(f,w) =A(g,w) (weR). (13)



Given n € Ny, we define &%%(Z?) as the set of those algorithms A € &Z3(Z?) which are
semi-adaptive. In analogy with (9) we set

e (S FxOG)= inf e(S,AFxQG). (14)
Acddsa(P)
Clearly, we have
edN(S F xQ,G) < e (S, F xQ,Q). (15)

The class of semi-adaptive algorithms was first considered in [16].

3 Lower bounds for deterministic solution operators

The abstract approach to deterministic problems can easily be obtained from that for stochastic
problems described in [7] by letting © = {wo} be the trivial one-point space (in other words,
all dependencies on w are dropped). This way we get the deterministic and randomized setting
for deterministic problems [17, 12], in a form as developed in [4, 5]. This framework is used
in the present section. (Observe that here the classes of deterministic and of deterministic
semi-adaptive algorithms coincide.) Besides the deterministic and randomized setting we also
need the average case setting. Let &2 = (F,G, S, K, A) be a deterministic problem, let v be a
measure on F' whose support is a finite set and let A be a deterministic agorithm for &2. Put

card(A,v,G) = /card(A,f)dV(f)a

e(S,A,V,G) = ||S(f)—A(f>Hng(f),

F

eve(S,v,G) = inf{e(S,A,v,G):
A a deterministic algorithm for & with card(A, v, G) < n}.

In this section we consider linear problems under standard information, which means we
assume the following. Let D be an arbitrary non-empty set, Z a linear space, F; a linear
subspace of the space of Z-valued functions on D, let F' be any non-empty subset of F}, A any
non-empty subset of {0, : x € D}, where d,(f) = f(z) € Z, let G be a normed space, and
S : F' — (G a mapping which is the restriction to F' of a linear operator from F} to G.

Proposition 3.1. Let n,n € N, i > 4n, and {w;}~, C F be such that
{reD :wizx)#0}N{xeD: wjx)#0} =0 (i#)). (16)

Then the following hold.
1. Assume that Z?Zl piw; € F for all p; € {—1,1}, i = 1,...,n. Let (g;)I, be independent,
centered Bernoulli random variables on a probability space (2,%,IP) and define the measure v
on F' to be the distribution of Z?:l g;w;. Then
) | )
el

1
eve(S,v,G) > = min (E
2 KC{1,...n},|K|>A—2n

2. Assume that —w; € F fori=1,...,n. Let v be the uniform distribution on the set

(Buw; : 1<i<m, Be{-11})

Z €kka

keK
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Then

e28(S, v, G) > min > lISwille. (18)

KC{1,..n},|K[>n—2n
keK

S| =

These types of lower bounds are well-known in IBC (see [12, 17]). The specific form (17)
presented here can be found in [4], Lemma 6. Since (18) is less visible in the literature, we
include the short proof for the sake of completeness.

Proof. Let A be any deterministic algorithm for S with
card(4,v) < n. (19)

Let ho denote the function which is identically 0 (ho does not need to be in F'). Let ¢ =
card(A, ho), and let (d,,)i_; be the sequence of information functionals called by A at input hy.
We have 0 < ¢ < +o00. First we assume ¢ > 1. Define

{i - 1<i<n, w(zr;)=0 forall 1<j<min(g,2n)}.

It follows from the assumptions that

L] = 7—2n> 3 (20)
We show that
q < 2n. (21)
Assume ¢ > 2n. Then we have
U}Z(l'j) =0 (Z € ]0, 1 S j S Qn),
and, since fw;(x;) = ho(z;) for all j < 2n and § € {—1,1}, it follows that
card(A, fw;) >2n+1 (i € Iy, B €{-1,1}).
Together with (20) this implies
2115 (2 1 2 1
card(A, v) ol( ?+ ) > n >n,
2n 2
a contradiction to (19). This proves (21), from which it follows that for all i € I,
wi(z;) =0 (1<j<q),
and hence
A(Bw;) = A(ho) (i € I, B € {-1,1}). (22)

Consequently, using (20),

1
e(A,v) = ﬁZ(HSwi—A(ho)HGJrH—Swi Alho)lle) = ZHSwzHG (23)

i€l ’LEIO

Recall that so far we assumed ¢ > 1. If ¢ = 0, this means that the output A(f) does not
depend on f at all. In this case (22) holds trivially, with [y = {1,...,n}, and (23) follows in
the same way. Since A was an arbitrary algorithm with (19), we obtain from (23)

€ (S Z [Swille > = min > lISwlle,
eK

n KC{1,...n},|K|>n— 2n
1610

which concludes the proof. O]



4 Lower bounds for stochastic solution operators

Let & = (F,(Q,%,P),G, S, K,A) be as in Section 2. We start with an observation about
deterministic semi-adaptive algorithms. We can connect the stochastic problem & with a

deterministic one &. For this purpose we assume that the original problem & is such that
S(f, )€ Li(Q,XP,G) (:=L(,G)) for all f € F. Then define S : F — L(2, G) by setting

(SN =5(fw) (we) (24)

and put . }
‘@:(FaIQ(QvG)?SaKaAF)' (25)

The behavior of the stochastic problem & with respect to semi-adaptive deterministic algo-
rithms is related to that of & in the deterministic setting as follows.

Lemma 4.1. Let A be a semi-adaptive algorithm for &2 and let Ny be given by (12). Then

e(S, A, F xQ,G) > sup EIS(f) = S(9) e (26)

F9€F,N1(f)=N1(9)

Moreover, for n € Ny,

1 -
e (S F xQ,G) > §eget(s, F,Li(Q,Q)). (27)

Proof. We have

e(5, A, F xQ,G) = swpE|S(f,w) = A(f,w)le
fer

sup E (IS(f,w) — A(f, w)lle + [|S(g,w) — Alg,w)lc)
F,9€F,N1(f)=N1(g)

sup E[[S(f,w) = S(g,w)lla
£,9€F,N1(f)=N1(g)

sup I1S(f) = S(9)llzac: (28)

[,9€F,N1(f)=N1(g)

N = N = N

which shows (26).

Now let n € Ny and assume that A satisfies, in addition, card(A, F') < n. Then the right-
hand side of (26) is known to be connected with the deterministic n-th minimal error of S as
follows, see also [17], Ch. 4.2. We define a mapping ¢ : K> — L;(£2, G) by choosing for each
a € Ni(F) an f, € F with Ny(f,) = a and setting $(a) = S(f,). For a € K=\ Ni(F) we set
¢(a) = 0. Consequently,

sup IS(f) = S(@lLee = sup sup IS(f) = S(9) |, e
[,9€F,N1(f)=N1(g) a€N1(F) f,9eF,N1(f)=N1(g)=a

> sup  swp  [S(f) = S(f)lns
a€EN; (F) fEF,N1 (f):a

= sup sup  [1S(f) — e(NL()l Ly e
a€N; (F) feF,N1 (f):a

= sup 1S(f) = N (f) |z (29)
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We claim that ¢ o N is the representation (8) of a suitable deterministic algorithm A=
(L2, (7)), (9:)2,) for 2. This is easily checked by taking any mapping 7 : ApUAq — Ap
which is the identity on Ar and setting

Lin=moL; Fi=o0, ¢i=¢k (i€Ny).

It follows from the assumption on A and (11) that card(A, F) = cardg(A, F) < n, hence
Sup 1S(f.w) = 2N (s = €r™(S F Li(2,G)). (30)
Combining (28) with (30) and taking the infimum over all N; gives (27).
0

Let ()72, be a sequence of independent standard Gaussian random variables. The case
p = 2 of the following lemma was shown in [7]. The proof for general p follows similar lines.

Lemma 4.2. Let 0 < p < co. Then there is a constant ¢(p) > 0 such that for allm € N

1/p
Pwe: min (Z v (w ) > c(p)ym'? 5 > 7/8.

S m) | £ 2m/2

Proof. Let BY denote the unit ball of R*, endowed with the £, (quasi-)norm [|(21, ..., z3)|s, =
1/
<Zf:1 |xi\p> " There is a constant co(p) > 0 such that for all k € N
Vol (Bf) < co(p)ek=r/P, (31)

see, e.g., [14], relation 1.18 on p. 11. Define ¢(p) = 27> VPcy(p)~'. Let m € N and set
k = [m/2]. Then

P min p>c
{/g{l m}\f\>m/2z|% “) 2 }
= P min p>c
{/g{l ..... m},| 7= kzm “) 2 }
Sy {Zm P < el }

Slmbl sl=k e s
> 2”“]1»{2@ )P < 2¢(p)? k} (32)

Furthermore, using (31),

S cavn) — e f o
ll[le, <c(p)(2K)1/P

Vol (¢(p)(2k) /P BY) = ¢(p)*(2k)"?Vol (BY)

<
< 2Mre(pyrey(p)t < 27°F, (33)
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From (32) and (33) we conclude

P min p>c > 1-92% >7/8.
{/C{l m}\/|>m/2Z (@) 2 } - 27/

]

Let A’ C A be any nonempty subset such that A\ A’ C Ag. For w € Q let the mapping
S. : F — G be given by

Su(f)=S(f.w) (f€F) (34)
and define the restricted problem 2, = (F,G, S, K, A,), where

A, ={\(,w): Ae A}

The following lower bound for the randomized n-th minimal errors was shown in [7], Lemma
4. Here [ * denotes the upper integral.

Lemma 4.3. Let v be a probability measure on F' supported by a finite set. Then for alln € Ny,

1 *
e (S, F x Q f e dP(w).
PSP xG) 2y inf [ (S, 6P (35)

Now we will use the results from Section 3. Let D, Z, F}, F be as in Section 3 and assume
that for each w € €2, the mapping S, : F' — G given by (34) is the restriction to F of a linear
operator from F; to G. Moreover, suppose there is a set A’ such that ) # A’ C A, A\ A’ C Aqg,
and for each A € A" and each w €  there is an x € D such that

A(f,w) =d6.(f) (f €F).
Combining Lemma 4.3 with Proposition 3.1, we obtain

Proposition 4.4. Let n,n € N, i > 8n, and assume that there are {w;}!, C F so that (16)
18 satisfied.

1. Assume that Z?:l piw; € F for all p; € {—1,1}, i = 1,..., 0. Let (g;)", be independent,
centered Bernoulli random variables on another probability space (21,%1,P1). Then

Z €kS 'LUk,

(S, F x Q,G) >

inf

1
6 P(w).
6 DGZ,P(D)21/4/ KC{1,..., n} |K|>n 4n dP(w) (36)

G

2. Assume that —w; € F' fori=1,...,n. Then

ran 1 3
S F x Q0,G) > — inf /Kq1 77777 min 4nZHS w, w)|lG- (37)

3N Dex,P(D)>1/4

Corollary 4.5. Let G = R. Then there is a constant ¢ > 0 such that the following holds. Under
the conditions of Proposition 4.4, assume that the random variables S(w;,w) (i =1,...,n) are
independent and Gaussian of mean zero. Then in case 1 of Proposition 4.4

1/2

ran =1/2 : ) 2
e (S, F x Q,R) > cn 11;11'1% (E|S(w,,w)| ) , (38)

while in case 2
(8, F x Q,R) > ¢ min (E|S(w;,w)]*)"*.

1<i<n

(39)
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Proof. Set o, = (E |S(wi,w)|2)1/2, S(wi,w) = 07;(w). Let ¢(p) for p = 1,2 be the constants
from Lemma 4.2. First consider case 1 of Proposition 4.4. Then by Khintchine’s inequality, see

[11], there is a constant ¢y > 0 such that
1/2
ZekS(wk,w) > ¢ (Z S(wk,w)2> )
keK

keK

E,

Using this and Lemma 4.2, we obtain

El Z ekS(wk,

keK

w)| > coe(2)7? min ai}

1<i<n

P min
KC{1,... i}, | K|>7i—4n

v

1/2
: 2 > —1/2
F KE{1 i} K |2ri—dn <kEZK S(wp, ) ) Z c2)n 1<ign 7!

1/2
. 2 2 > 12
KC{1 omp K|2a/2 (%ZK 7 (w) ) z c2)n [Sign 7t

> P

ool 3

Y

I
=
——

1/2
' 9 ~1/2
min E w >c(2)n >
KC{1,...n},| K|>7/2 (kEK’Vk( ) > > ¢(2) =

which together with (36) implies (38). In case 2 we argue similarly:

. S o
P {Kg{l ..... % 1,1}(271—471];( [S(wi, w)| 2 e(1)n [ Sish 0’}

- P i > ¢(1)7 min o;
{Kg{l,..glal}eremz D o) = e [ Sisn gl}
keK
> P min Z [ve(w)| > ¢ > z
- KC{1,...n}|K|>7/2 £ -8
With (37) this implies (39). O

5 Stochastic integration

Now we consider stochastic integration. We restrict our analysis to deterministic integrands.
Let @ C R? be a bounded Lipschitz domain, that is, a set which is the closure of a bounded
open set with locally Lipschitz boundary. Let ) be equipped with the Lebesgue measure.
Let 1 < p < oo and let L,(Q) denote the space of equivalence classes of real-valued, Borel
measurable, p-integrable functions, equipped with the norm

1/p
1Fllzpi) = ( /Q |f<x>\pdx)

1F 2@ = esssupeeqlf(@)]-

for p < 0o, and
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In the sequel it is convenient to distinguish between the space of equivalence classes of
functions L,(Q) and the linear space of all functions £,(Q), thus f € £,(Q) iff [f] € L,(Q),
where [f] is the equivalence class of f with respect to equality up to a subset of @ of Lebesgue
measure zero. The latter is a linear space and ||[f]||z,(g) is a semi-norm on it (we use though
the same symbol || f||z,(q) for it).

Let WQ be an Ly(Q)-isonormal process on some probability space (€2, 3, P), that is, a linear
isometric operator from Ly(Q) to Ly (Q) such that Wy (f) is standard Gaussian for all f € Ly(Q)
with || fllzo@) = 1 (see, e.g., [13]). The stochastic integral of f € Ly(Q) with respect to Wy is
defined as

/Q f(2)dW = Wo(f). (40)

For our purposes we need a suitable pathwise defined version
Wgo: L3(Q) x @ = R (41)
such that Wq(f,w) is linear in f for each w € €, and for each f € L5(Q)

Waolf. ) = Wa(f), (42)

with equality meant in Lo(Q2). Let (f;)ies, I a suitable index set, be a Hamel basis of Ly(Q).
For each i € I let g; = g;(w) be a representative of the equivalence class W (f;) € Ly(Q). Then
we set Wo(fi,w) = gi(w) for i € T and w € Q and extend the so-defined mapping by linearity
to all of Ly(Q). Finally, we define Wo(f,w) = Wo([f],w) for f € Lo(Q). Tt follows from the
linearity of WQ that Wy, is as required.
Now let F' be any nonempty subset of £5(Q), G = R, K = RU K,, where K, is any
non-empty set, and
A=A UA,, (43)

where Ay = {6} : t € Q}, with 6}(f,w) = f(t), and A, is a non-empty set of mappings from (2
to Ky. Thus, formulated in the terminology above, we consider the problem

Py = (F,(Q,%,P),R, W, K, A). (44)

Note that with D = @, Z =R, A’ = A; the assumptions formulated before Proposition 4.4 are
satisfied.

Let QO g Qa
d

Qo = H[ai; a; +bl. (45)

i=1
be a cube of side-length b > 0, let m € N and let

Qo= Qu;
Jj=1

be the partition of @y into m? congruent cubes of disjoint interior. Let z; denote the point in

Qo,; with minimal coordinates. Furthermore, let 1) be a C* function on R? with support in
[0, 1] satisfying ||¢)||,re) = 1. Define for z € Q

Vi) =y 'm(z—z;) (G=1,... ,m%). (46)
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We have
1/2

(B Wows o)) = [9illLaq) = b¥*m~2. (47)

Denote
md
U= oy aye{-1,1}p, W, ={By;: Be{-11},1<j<m}.
j=1

Finally, let Jr : F' — Ly(Q) be the embedding map.

Proposition 5.1. There are constants cq, co,c3 > 0 such that the following hold: for all m,n €
N with m? > 8n

e (Wo, F x QUR) > cysup{s >0:r¥), C F} (48)
e (W, F x QR) > com™?sup{r > 0: x¥}, C F} (49)

and for alln € N
e;ilsa(WQ, F x Q,R) > C3e;ilet(JFa F7 L2(Q)) <5O>

Note that Proposition 5.1 holds for arbitrary As, see (43), including the (strongest) case of
full information about w, that is, Ky = Q and Ay = {Idg}. Relation (50) is due to Przybylowicz
[15].

Proof. Let m,n € N, m? > 8n. Let k > 0, to be fixed later on and put w; = kt; for
j=1,...,m% By (47) and the linearity of Wy, in the first argument,

(B|Wo(w;,w)2) " = k (B[Wo(ty,w)?)* = sb"/?m=4/2, (51)

Moreover, the random variables Wg(w;,w) (j = 1,...,m%) are independent and Gaussian of
mean zero. To show (48), let x be such that k¥l C F. From (38) of Corollary 4.5 with n = m¢
we conclude, using also (51),

e (Wo, F x QR) > em®? min (]E|WQ(wi,w)]2)l/2 > CR, (52)

1<i<n
showing (48). Now let x be such that kW2 C F. Using (39) and (51), we get

e (Wo, F x Q,R) > CII?LH_ (E |VVQ(wZ»,cu)|2)1/2 > ckm Y2, (53)
which gives (49).

Finally, to show (50), let A be a deterministic semi-adaptive algorithm for #, with
card(A, F') < n and let Ny be given by (12). It follows from (26) of Lemma 4.1 that

e(Wo, A, F x QR) > sup Wolf, ) = Walg, )z
f,9€F,N1(f)=N1(g)
> ¢ sup If = gllzoc0)- (54)
£,9€F,N1(f)=N1(g)

Arguing as in the proof of (27) of Lemma 4.1 yields (50).
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Next we give a general upper bound. Here we specify A, from (43) to be the class Ay of
linear functionals of the stochastic process, more precisely

Noo={0; : h € La(Q)}, (55)
where
Si(f,w) =Wo(h,w) (f€F weQ). (56)
Thus, K = K» = R. Fix a finite dimensional subspace H C Ly(Q). Let n e N, 2, € Q, g; € H
(t=1,...,n) and define T': F — Ly(Q) by
TF=3 e (f€F)
i=1

Moreover, let (€24,31,P;) be another probability space, let & and (; be random variables on
(Qq, %1, Py) with values in @ and H, respectively. For w; € €; define

Tof = F(&(w))Cilw) (f€F).

i=1

Lemma 5.2.

' Wo F X QR) < sup|lf = Tflr@ (57)
ran 1/2
G (Wo F x QR) < sup (B, lf = TuuflE0) (59)

Suppose that F is relatively compact in Ly(Q) and there is an m € N and Borel measurable
mappings ®; : R™ — Q, ©; : R™ — H (i =1,...,n), such that if (v;)j, is a sequence of in-
dependent standard Gaussian random variables, then ((®i(v1, ..., ¥m))1, (©:i(71, -, Ym))iey)
and ((&(w1))ry, (G(w1))iy) have the same distribution. Then

e 1/2
i (Wo X QR) < sup (B 1f = T i) (59)

Proof. We define the algorithm Ag for f € F and w € ) by

Ao(f,w) = Wo(T f,w) = mez YWo(giw).

=1
Clearly, Ay € @53*(Pg) and

e(WQ7AO7F><QaR) = iugE|WQ(fvw) _AO(f7w)|
(S

< sup (B|Wo(f,w) — Wo(Tf,w)?)"* = sup |f = Tf || 1o,
fer fer

which gives (57). Now let (1), be an orthonormal basis of H. For f € F, w € Q, and w; €
we set

A, (frw) = WQ(TwlfM)ZZf(Si(wl))WQ(Ci(wl)w) (60)

n

= ZZf(fi(wl))@i(wl),hz)WQ(hl,w). (61)
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Then A = ((,21,P1), (Au,)weq,) belongs to 4" (Pg). Indeed, the statement about the
cardinality is a consequence of representation (60), while measurability follows from (61). Sim-
ilarly to the deterministic case we conclude

e(WQaAaFXQ7R>2 S ?ugEPIXMWQ(f,W)_Awl(f,UJ)lz
S
— iunglEMWQ(f,w)—WQ(Twlf,w)F
(S

2
= igngll\f — T fll1200)-

This implies (58).
To show (59), let § > 0 and let Fy C F' be a finite d-net of F i.e.,

supmin || f — <. 62
feggeFollf 9ll.@) < (62)

We represent the randomized algorithm A above as a deterministic algorithm A which exploits
the randomness of the underlying probability space (£2,%,P). Let (g;)7; be an orhonormal

system in Lo(Q) orthogonal to span(H, Fy). We define A = ((L;)22,, (%), ($:1)22,) as follows.
For i € N and (21,...,2_1) € R put
(5; if 1<i<m

- (%; (1mm) if m<i<m-+n
Li(zla"'azifl) = e <63>

5(29i7m7n(n 77777 o) if m+n<i<m+2n
o2 if m+2n <.
Furthermore, we set
n==Tmiam-1=0, Tmron=1, 7,=0 (i>m+2n) (64)
Bmaon(Z1, - Zmazn) = Y ZmaiZminsss 21 =0 (i #m+2n). (65)
j=1

Now we fix f € F. Then for each w € 2

~ Wa(gi,w) if 1<i<m
a; = (Li(ala"'a&ifl))<f7w): f(q)i—m(al)"'aam)) if m<i<m-+n
Wo(Oi—m—n(ar,...,an),w) if m+n<i<m+2n.

Note that aq,...,a,, are independent standard Gaussian random variables. Moreover,

A(fv w) = Z UmtjAm+ntj = Z f(q)j(a’h s am))WQ<@j(a17 ce 7a’m>7w>

n M

= D D f(@i(ar,. . an)(O(ar, .., am), ) Wo(lu,w). (66)
j=1 =1
It follows that A € 3%, (2q). Let fo € Fy be such that || f — foll o) < 6. Then
Ep|Wo(f,w) = A(f,w)l < Ep[Wo(fo,w) — A(f,w)| +0. (67)
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The following relations hold. To justify the step from (68) to (69) below, we note that the
(g5)i-, are orthogonal to fo and (hy)2;, hence the random variables (a;)7-, = (Wg(g;, w))}~, are
independent of Wg(fo,w) and (Wg(hy,w))M,. The step from (70) to (71) uses the distribution
assumption of the lemma.

Ep(Wo(fo,w) — A(f,w))?

n M 2
= ]EP (WQ(anw) - Z Z f(q)j(ala s aam))<®j(a1a ce aam)7 hl)WQ(hlvw)> (68)
j=1 I=1
2
= ]E]p f() ZZf al,... ))(@j(al,...,am),hl)hl (69)
j=11=1 L2(Q)
2
= ]E]p f() Zf al,..., ))@j(al,...,am) (70)
L2(Q)
" 2
= fo— Z J(&(wi))Gj(wr) (71)
J=1 L2(Q)
= Ep, lfo— Toufll}i) < Bey (IF = Ton fllzai@ +0)* (72)
Since ¢ > 0 was arbitrary, (67) and (72) imply (59).
O

6 Stochastic integration of functions from Sobolev spaces

Let 1 < p < oo. For r € N, the Sobolev space W (Q) consists of all equivalence classes of
functions f € L,(Q) such that for all @ = (ay,...,aq) € Ng with |a| = Z?Zl a; < r, the
generalized partial derivative D f belongs to L,(Q). The norm on W) (Q) is defined as

1/p
Ifllwg@) = | D IDFI7, o) (73)
la| <7
if p < 00, and
[ fllwz @ = max 1D fll2e(@)- (74)

For r = 0 we set W)(Q) := L,(Q). Let C(Q) denote the space of continuous functions on
Q, endowed with the supremum norm. If r/d > max(1/p — 1/2,0), then W (Q) is compactly
embedded into Ly(Q), and we denote the respective embedding map by JJ. Furthermore,
W7 (Q) is continuously embedded into C'(Q) if and only if

p=1 and r/d>1
or (75)
l<p<oo and r/d>1/p,

see [1], Ch. 5.
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We remain in the same framework as described in Section 5, see (43) and (44). If (75)
holds and the deterministic semi-adaptive setting is concerned, we consider W} (Q) as identified
with a subset of C'(Q), hence, function values at points of @) are well-defined. Here we set
F = Bwg(g)- In the other cases it is convenient to consider also the respective Sobolev spaces
of functions, which we denote by Wy (Q), thus f € W) (Q) iff [f] € W] (Q). If we are in
the deterministic adaptive or in the randomized setting, we put F = By (q)- Finally, if the
deterministic semi-adaptive setting is considered and (75) does not hold, the lower bound
statement egsa(WQ,BW;;(Q) x ,R) = 1 would be trivial, because function values at finitely
many deterministic points could be arbitrarily perturbed without changing the class of the
function and thus without changing the solution. Here we consider, less trivially, the dense
subset Byyr(q) N C(Q) of Bywy(q). Relation (78) shows that even then no nontrivial rate can
hold for deterministic semi-adaptive algorithms, that is, for algorithms that use deterministic
sampling of the integrand.

The following result gives the n-th minimal errors in all three settings and thus the respective
complexities.

Theorem 6.1. Let d,r € N, 1 < p,q < oo, r/d > max(1l/p—1/2,0). Then

det(WQ’ Bwr X 0 R) — ran(WQ,Bwr % 0 R) d+max(%f%,0) (76)
T 1 1

e (Wa, Bup) x QR) = n-atmax(G=30) 4 g> -V (g =~ Ap= 1) (77)
p p

1 1
eisa(WQ, (BW[)(Q) N O(Q)) X Q,R) = 1 if g < ]_j V (3 = Z_) N p> 1) (78)

To prove the upper bounds we will use approximation results from [6]. We recall some
details of the construction, for full background we refer to [6]. For a set B let .#(B) denote the
set of all real-valued functions on B. We start with randomly shifted interpolation on [0, 1]<.
Fix 0 € Ny, 0 < d < 1, and let

Pf= Zf(zj)ﬂj (f € Z([0.1]%)

be for d = 1 the Lagrange interpolation operator of degree p and for d > 1 its tensor product,
where (z;)7_; is the uniform grid on [0, 1 — ¢]? and (7;)5_, are the respective Lagrange polyno-
mials of degree do on R%. Let 6 be a uniformly dlstrlbuted on [0,1]¢ random variable, defined
on a probability space (21, %;,P;). For a function f € .Z([0,1]¢) put

(P, f)( Z f(zj + 60(w))mi(z — 00(wy))  (z € RY). (79)

7j=1

Now we consider the Lipschitz domain @ and apply the operator P, locally. We let 2y € R?
and b > 0 be such that .
Q CQ:=uwo+[0,0]" (80)

For [ € Ny let

Q:UQM

=1
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be the partition of Q into 2% cubes of sidelength b2~ and of disjoint interior. Let z;; denote
the point in @);; with minimal coordinates and let

L={i:1<i<2% QuCQ} (81)
Finally, we fix a 0 € Ny and set for f € .Z#(Q)
(Pl )(@) =YD Flan+b27 (2 +00(wi)))mus () (b2 (@ — 2i1) — 60(wn))  (z € Q). (82)
ieT) j=1

Here n;;(z) are C° functions on R? of bounded support, forming a partition of unity on Q, see
6] for details. Moreover, let P,y be the (deterministic) operator which results from (82) when
O(wy) is replaced by 0. The following was shown in [6], Prop. 3.3 and 4.1.

Proposition 6.2. Letr € N, 1 < p < o0, 7/d > max(1/p—1/2,0), o >r—1, 0 > 0. Then
there are constants ci,ca,c3 > 0, lg € Ng such that for all | > I

sup (E]Pl”f . Pl7wlf”%2(Q))1/2 < 022—rl+max(1/p—1/2,0)dl (83)
feBwr)
LT 1 r_ 1 _
and, Zf&>5 \/(8—5 N p—l),
sup ||f = Proflla) < es27" /20, (84)
feBwr @)

Proof of Theorem 6.1. For | € Ny let H; C Ly(Q) be defined by
H; = span {num : i € I;, ™ € P},

where P denotes the space of polynomials on R? of degree < dp. The scaled and shifted
polynomials appearing in (82) all belong to this space. It follows from (82) that Py and P,
have the form required for (57) and (58) of Lemma 5.2. Taking into account that by (81) we
have |Z;] < 2%, the upper bound for ej**(Wq, By () X €, R) of (76) and that of (77) follow
directly from Lemma 5.2 and Proposition 6.2. The upper bound of (78) is trivial.

Finally, the upper bound of (76) for e;® (W, By (@) X 2, R) follows from (83) by using (59)
of Lemma 5.2 with m =d and ®;; : R - Q, ©;; : R — H, (1 € Z;,j = 1,..., k) given by

@ij(al,...,ad) = a;li—i—bQ_l(zj+5(<I>(a1),...,(l>(ad))) € Q
(©ij(ar,...,aq))(x) = mu(x)m; (b_IZZ(I —xy) — 0(P(ay),. .., @(ad))) (x € Q),
where ® : R — [0, 1] is the standard normal cumulative distribution function.

To show the lower bounds, let ¢; be as in (46). It follows from the definitions (73) and (74)
that there are constants ci, ¢, > 0 such that for m € N, (a;)7 C R

md
C1mr_d/p||(04i)||£;nd < Zaz‘@/h‘ < Cer_d/pH(ai)Hf?d’ (85)
=1 Wr(Q)
hence
¢'m 7"V C By, ¢ 'm T PEL C Bug). (86)
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Given n € N, we set m = [(8n)'/?] + 1 and conclude from Proposition 5.1
en" (W, By X L, R) > cmax(n /4, pr/dH/p=1/2y (87)

showing the lower bounds in (76) and (77). Under the assumptions of (78) Theorem 4.3 of [6]
states that there is a constant ¢ > 0 such that for all n

eiet(‘];; BW;(Q) n C<Q>7 LQ(Q)) > c.

Now the lower bound in (78) follows from (50).
O]

Remark. The lower bounds of Theorem 6.1 hold for arbitrary A, including the case of full
information about w. The algorithms realizing the upper bounds use linear information of the
stochastic process, see (55) and (56).

Based on the results above and that of Section 5 of [6], statements similar to Theorem 6.1
can also be derived for Besov and Bessel potential spaces. Let us just mention one result in
this direction. Let 1 < p,q < oo, r € R, r/d > max(1/p — 1/2,0), and let B} (Q) denote the
Besov space. For the definition on R? see [18, 19], the case of bounded Lipschitz domains can
be found in [20, 21]. Notice that for 1 < p < oo, r ¢ Ny, By (Q) is the Slobodeckij space
(see [18, 19]), considered for d = 1 in [3]. Under the above conditions, B] (Q) is compactly
embedded into Ly(Q).

Theorem 6.3. Letd € N, 1 <p,q<oo, r€R, r/d>max(1l/p—1/2,0). Then
€2 (Wo, Boy @) X UR) = e (Wg, By (@) x Q,R) < n~itmx(-20) (88)

The upper bounds in the case d = 1, 0 < r < 2, p = ¢ > 2 where obtained (under an
additional growth condition) by Eisenmann and Kruse in [3]. Theorem 6.3 shows that these
bounds are sharp.

Proof. The upper bounds follow from Proposition 5.1 of [6] in the same way as those of Theorem
6.1 from Proposition 6.2 above.

According to Theorem 2.3.2 of [2], there are constants c¢i,co > 0 such that for m € N,
()™ CR

md
Clmrfd/p“(Oéi)He;nd < Zaﬂpi < Cerfd/pH(ai)Hégld_
= B,(Q)
The rest of the lower bound proof is analogous to that of Theorem 6.1.

]
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