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Abstract

We study the complexity of stochastic integration with respect to an isonormal process
defined on a bounded Lipschitz domain Q ⊂ Rd. We consider integration of functions from
Sobolev spaces W r

p (Q) and analyze the complexity in the deterministic and randomized
setting. Matching upper and lower bounds for the n-th minimal error are established,
this way determining the complexity of the problem. It turns out that the stochastic
integration problem is closely related to approximation of the embedding of W r

p (Q) into
L2(Q).

1 Introduction

Let Q ⊂ Rd be a bounded Lipschitz domain and let WQ be an isonormal process on L2(Q).
We study the complexity of pathwise approximation of the stochastic integral

∫
Q
f(x)dWQ(x).

Here f is a function from some Sobolev space W r
p (Q) (embedded in L2(Q)). We determine the

complexity in various settings.
On the way to this main result we first review the general approach of information-based

complexity theory (IBC) to stochastic problems, introduced in [7]. We complement it by
considering besides adaptive deterministic and randomized algorithms a third setting – that of
semi-adaptive algorithms, which turns out to be much closer to the deterministic setting for
deterministic problems than the larger class of adaptive deterministic algorithms. We prove
some new general results, in particular by exploiting the connection to deterministic problems
in both the deterministic and randomized settings. It turns out that the stochastic integration
problem is closely related to approximation of the embedding of the respective function space
into L2(Q). Furthermore, lower bounds for stochastic integration in general function classes on
Q are proved. Finally, the complexity for Sobolev classes is determined in all three settings.
We also treat the case of Slobodeckij spaces. Algorithms and error estimates for some of the
latter were obtained by Eisenmann and Kruse [3]. Our results provide matching lower bounds.
Our methods are extensions of those from [7] and [6].

The complexity of stochastic integration of functions on finite intervals in R was investigated
in [22], [8], [15], [16]. We also mention related work on the complexity of stochastic differential
equations [9, 10]. In the present paper the complexity of stochastic integration with respect to
a d-dimensionally indexed stochastic process is considered for the first time. In particular, for
Q = [0, 1]d, our study includes the integral with respect to the Wiener sheet measure.
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The paper is organized as follows. In Section 2 we review and enlarge the general theory,
in Section 3 the needed previous results for deterministic problems in the randomized setting
are stated. Section 4 contains new results on the general theory, while stochastic integration
for arbitrary subsets of L2(Q) is studied in Section 5. The final Section 6 contains the main
result about Sobolev classes and an analogous statement for Slobodeckij spaces.

Let N = {1, 2, . . . } and N0 = {0, 1, 2, . . . }. The unit ball of a Banach space X is denoted by
BX . We often use the same symbol c, c1, . . . for possibly different positive constants (also when
they appear in a sequence of relations). For sequences an, bn ≥ 0 (n ∈ N) we write an � bn if
there are constants n0 ∈ N and c > 0 such that an ≤ cbn for all n ≥ n0. Moreover, an � bn
stands for bn � an, while an � bn means that both an � bn and bn � an hold.

2 Preliminaries: A general setting of IBC for stochastic

problems

In this section we recall the IBC approach to stochastic problems from [7]. An abstract stochas-
tic numerical problem P is given as

P = (F, (Ω,Σ,P), G, S,K,Λ). (1)

Here F is a non-empty set, (Ω,Σ,P) a probability space, G a Banach space and S is a mapping
F × Ω→ G. The operator S is called the solution operator, it sends the input (f, ω) ∈ F × Ω
of our problem to the exact solution S(f, ω). Moreover, Λ is a nonempty set of mappings from
F ×Ω to K, the set of information functionals, where K is any nonempty set - the set of values
of information functionals.

We assume that for each f ∈ F the mapping ω → S(f, ω) is Σ-to-Borel-measurable and
P-almost surely separably valued, i.e., for each f ∈ F there is a separable subspace Gf of G
such that P{ω : S(f, ω) ∈ Gf} = 1.

An (adaptive) deterministic algorithm for P is a tuple A = ((Li)
∞
i=1, (τi)

∞
i=0, (ϕi)

∞
i=0) such

that L1 ∈ Λ, τ0 ∈ {0, 1}, ϕ0 ∈ G, and for i ∈ N

Li+1 : Ki → Λ, τi : Ki → {0, 1}, ϕi : Ki → G (2)

are arbitrary mappings. Given an input (f, ω) ∈ F×Ω, we define (λi)
∞
i=1 with λi ∈ Λ as follows:

λ1 = L1, λi = Li(λ1(f, ω), . . . , λi−1(f, ω)) (i ≥ 2). (3)

Define card(A, f, ω), the cardinality of A at input (f, ω), to be 0 if τ0 = 1. If τ0 = 0, let
card(A, f, ω) be the first integer n ≥ 1 with τn(λ1(f, ω), . . . , λn(f, ω)) = 1 if there is such an
n. If τ0 = 0 and no such n ∈ N exists, put card(A, f, ω) = +∞. Observe that we have the
following alternative: Either

card(A, f, ω) = 0 for all (f, ω) ∈ F × Ω or card(A, f, ω) ≥ 1 for all (f, ω) ∈ F × Ω. (4)

We define the output A(f, ω) of algorithm A at input (f, ω) as

A(f, ω) =

{
ϕ0 if card(A, f, ω) ∈ {0,∞}
ϕn(λ1(f, ω), . . . , λn(f, ω)) if 1 ≤ card(A, f, ω) = n <∞.

(5)

2



Define k∗ = K and K0 = {k∗}. (This is a technical definition which guarantees that K0 is a
one-element set whose element does not belong to any Ki for i ≥ 1.) Let K∞ = ∪∞i=0K

i and
define a mapping, the information operator, N : F × Ω→ K∞ as

N(f, ω) =

{
k∗ ∈ K0 if card(A, f, ω) ∈ {0,∞}
(λ1(f, ω), . . . , λn(f, ω)) ∈ Kn if 1 ≤ card(A, f, ω) = n <∞.

(6)

Furthermore, define a mapping ϕ : K∞ → G by setting for a ∈ K∞

ϕ(a) =

{
ϕ0 if a = k∗

ϕn(a1, . . . , an) if a = (a1, . . . , an) ∈ Kn, n ∈ N.
(7)

This gives a convenient representation A = ϕ ◦N , that is,

A(f, ω) = ϕ(N(f, ω)) ((f, ω) ∈ F × Ω). (8)

Given n ∈ N0, we define A det
n (P) as the set of those deterministic algorithms A for P

with the following properties: For each f ∈ F the mapping ω → card(A, f, ω) is Σ-measurable,
E card(A, f, ω) ≤ n, and the mapping ω → A(f, ω) ∈ G is Σ-to-Borel-measurable and P-almost
surely separably valued. The cardinality of A ∈ A det

n (P) is defined as

card(A,F × Ω) = sup
f∈F

E card(A, f, ω),

the error of A in approximating S as

e(S,A, F × Ω, G) = sup
f∈F

E ‖S(f, ω)− A(f, ω)‖G

and the deterministic n-th minimal error of S is defined for n ∈ N0 as

edet
n (S, F × Ω, G) = inf

A∈A det
n (P)

e(S,A, F × Ω, G). (9)

A randomized algorithm for P is a tuple A = ((Ω1,Σ1,P1), (Aω1)ω1∈Ω1), where (Ω1,Σ1,P1)
is another probability space and for each ω1 ∈ Ω1, Aω1 is a deterministic algorithm for P.
Let n ∈ N0. Then A ran

n (P) stands for the class of randomized algorithms A for P with
the following properties: For each f ∈ F the mapping (ω1, ω) → card(Aω1 , f, ω) is Σ1 × Σ-
measurable,

E P1×P card(Aω1 , f, ω) ≤ n,

and the mapping (ω1, ω)→ Aω1(f, ω) is Σ1 × Σ-to-Borel-measurable and P1 × P-almost surely
separably valued. We define the cardinality of A ∈ A ran

n (P) as

card(A) = sup
f∈F

E P1×P card(Aω1 , f, ω),

the error as
e(S,A, F × Ω, G) = sup

f∈F
E P1×P‖S(f, ω)− Aω1(f, ω)‖G

and the randomized n-th minimal error of S as

eran
n (S, F × Ω, G) = inf

A∈A ran
n (P)

e(S,A, F × Ω, G).
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Considering trivial one-point probability spaces Ω1 = {ω1} immediately yields

eran
n (S, F × Ω, G) ≤ edet

n (S, F × Ω, G). (10)

By definition (3), deterministic algorithms can use the intrinsic randomness of the stochastic
problem, so the choice of information about f may depend on ω, in general. Therefore in some
concrete cases, including the stochastic integration problems considered here, deterministic
algorithms can simulate randomized ones by using the additional randomness in the problem
(see, e.g., the proof of Lemma 5.2). This leads to the same rates for deterministic and stochastic
minimal errors. We want to single out a class of algorithms where this is not the case, that is,
the information collected about f ∈ F does not depend on ω. This class is much closer to the
class of deterministic algorithms for deterministic problems than the class above. There are
some interesting lower bounds statements connected with this class, see (50), (77), and (78).

First let us formalize this notion. For this purpose let ΛF ⊆ Λ be the subset of all λ ∈ Λ
which depend only on f ∈ F , precisely,

ΛF = {λ ∈ Λ : λ(f, ω1) = λ(f, ω2) for all f ∈ F, ω1, ω2 ∈ Ω},

and correspondingly, ΛΩ ⊆ Λ the set of all those λ ∈ Λ which depend only on ω ∈ Ω. A
deterministic algorithm A = ((Li)

∞
i=1, (τi)

∞
i=0, (ϕi)

∞
i=0) is called semi-adaptive, if the following

hold. There is a sequence (σi)
∞
i=0 with σ0 ∈ {0, 1} and σi : Ki → {0, 1} (i ∈ N) being any

mappings satisfying σi ≥ τi. In analogy to the cardinality above we define cardF (A, f, ω) for
(f, ω) ∈ F × Ω to be 0 if σ0 = 1, while if σ0 = 0, we let cardF (A, f, ω) be the first integer
m ∈ N with σm(λ1(f, ω), . . . , λm(f, ω)) = 1 (with the λi given by (3)), if there is such an m. If
no such m ∈ N exists, set cardF (A, f, ω) = ∞. Then for all f and ω the following has to be
satisfied for i ∈ N.

λi ∈
{

ΛF if i ≤ cardF (A, f, ω)
ΛΩ if i > cardF (A, f, ω).

This concludes the definition of a semi-adaptive algorithm. First note that cardF (A, f, ω) does
not depend on ω, so we write cardF (A, f) instead. Similarly, λi(f, ω) = λi(f) (1 ≤ i ≤ m).
Also observe that we always have

cardF (A, f) ≤ card(A, f, ω)

for all f and ω. It follows that

sup
f∈F

cardF (A, f) ≤ sup
f∈F

E card(A, f, ω) = card(A,F ). (11)

We put

N1(f) =

{
k∗ ∈ K0 if cardF (A, f) = 0 or cardF (A, f) =∞
(λ1(f), . . . , λm(f)) ∈ Km if 1 ≤ cardF (A, f, ω) = m <∞.

(12)

So such an algorithm first collects information about f , which does not depend on ω, but
otherwise may be adaptive: N1(f). After that information about ω is collected, which may
depend on the previously computed values of f . Recalling (6)–(8), we note that for f, g ∈ F
with N1(f) = N1(g) we have

N(f, ω) = N(g, ω), thus A(f, ω) = A(g, ω) (ω ∈ Ω). (13)
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Given n ∈ N0, we define A dsa
n (P) as the set of those algorithms A ∈ A det

n (P) which are
semi-adaptive. In analogy with (9) we set

edsa
n (S, F × Ω, G) = inf

A∈A dsa
n (P)

e(S,A, F × Ω, G). (14)

Clearly, we have
edet
n (S, F × Ω, G) ≤ edsa

n (S, F × Ω, G). (15)

The class of semi-adaptive algorithms was first considered in [16].

3 Lower bounds for deterministic solution operators

The abstract approach to deterministic problems can easily be obtained from that for stochastic
problems described in [7] by letting Ω = {ω0} be the trivial one-point space (in other words,
all dependencies on ω are dropped). This way we get the deterministic and randomized setting
for deterministic problems [17, 12], in a form as developed in [4, 5]. This framework is used
in the present section. (Observe that here the classes of deterministic and of deterministic
semi-adaptive algorithms coincide.) Besides the deterministic and randomized setting we also
need the average case setting. Let P = (F,G, S,K,Λ) be a deterministic problem, let ν be a
measure on F whose support is a finite set and let A be a deterministic agorithm for P. Put

card(A, ν,G) =

∫
F

card(A, f)dν(f),

e(S,A, ν,G) =

∫
F

‖S(f)− A(f)‖Gdν(f),

eavg
n (S, ν,G) = inf{e(S,A, ν,G) :

A a deterministic algorithm for P with card(A, ν,G) ≤ n}.

In this section we consider linear problems under standard information, which means we
assume the following. Let D be an arbitrary non-empty set, Z a linear space, F1 a linear
subspace of the space of Z-valued functions on D, let F be any non-empty subset of F1, Λ any
non-empty subset of {δx : x ∈ D}, where δx(f) = f(x) ∈ Z, let G be a normed space, and
S : F → G a mapping which is the restriction to F of a linear operator from F1 to G.

Proposition 3.1. Let n̄, n ∈ N, n̄ > 4n, and {wi}n̄i=1 ⊂ F be such that

{x ∈ D : wi(x) 6= 0} ∩ {x ∈ D : wj(x) 6= 0} = ∅ (i 6= j). (16)

Then the following hold.

1. Assume that
∑n̄

i=1 βiwi ∈ F for all βi ∈ {−1, 1}, i = 1, . . . , n̄. Let (εi)
n̄
i=1 be independent,

centered Bernoulli random variables on a probability space (Ω,Σ,P) and define the measure ν
on F to be the distribution of

∑n̄
i=1 εiwi. Then

eavg
n (S, ν,G) ≥ 1

2
min

K⊆{1,...,n̄},|K|≥n̄−2n

(
E

∥∥∥∥∥∑
k∈K

εkSwk

∥∥∥∥∥
G

)
. (17)

2. Assume that −wi ∈ F for i = 1, . . . , n̄. Let ν be the uniform distribution on the set

{βwi : 1 ≤ i ≤ n̄, β ∈ {−1, 1}}.
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Then

eavg
n (S, ν,G) ≥ 1

n̄
min

K⊆{1,...,n̄},|K|≥n̄−2n

∑
k∈K

‖Swk‖G. (18)

These types of lower bounds are well-known in IBC (see [12, 17]). The specific form (17)
presented here can be found in [4], Lemma 6. Since (18) is less visible in the literature, we
include the short proof for the sake of completeness.

Proof. Let A be any deterministic algorithm for S with

card(A, ν) ≤ n. (19)

Let h0 denote the function which is identically 0 (h0 does not need to be in F ). Let q =
card(A, h0), and let (δxi)

q
i=1 be the sequence of information functionals called by A at input h0.

We have 0 ≤ q ≤ +∞. First we assume q ≥ 1. Define

I0 = {i : 1 ≤ i ≤ n̄, wi(xj) = 0 for all 1 ≤ j ≤ min(q, 2n)}.

It follows from the assumptions that

|I0| ≥ n̄− 2n ≥ n̄

2
. (20)

We show that
q ≤ 2n. (21)

Assume q > 2n. Then we have

wi(xj) = 0 (i ∈ I0, 1 ≤ j ≤ 2n),

and, since βwi(xj) = h0(xj) for all j ≤ 2n and β ∈ {−1, 1}, it follows that

card(A, βwi) ≥ 2n+ 1 (i ∈ I0, β ∈ {−1, 1}).

Together with (20) this implies

card(A, ν) ≥ 2|I0|(2n+ 1)

2n̄
≥ 2n+ 1

2
> n,

a contradiction to (19). This proves (21), from which it follows that for all i ∈ I0

wi(xj) = 0 (1 ≤ j ≤ q),

and hence
A(βwi) = A(h0) (i ∈ I0, β ∈ {−1, 1}). (22)

Consequently, using (20),

e(A, ν) ≥ 1

2n̄

∑
i∈I0

(‖Swi − A(h0)‖G + ‖ − Swi − A(h0)‖G) ≥ 1

n̄

∑
i∈I0

‖Swi‖G. (23)

Recall that so far we assumed q ≥ 1. If q = 0, this means that the output A(f) does not
depend on f at all. In this case (22) holds trivially, with I0 = {1, . . . , n̄}, and (23) follows in
the same way. Since A was an arbitrary algorithm with (19), we obtain from (23)

eavg
2n (S, ν) ≥ 1

n̄

∑
i∈I0

‖Swi‖G ≥
1

n̄
min

K⊆{1,...,n̄},|K|≥n̄−2n

∑
k∈K

‖Swk‖G,

which concludes the proof.
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4 Lower bounds for stochastic solution operators

Let P = (F, (Ω,Σ,P), G, S,K,Λ) be as in Section 2. We start with an observation about
deterministic semi-adaptive algorithms. We can connect the stochastic problem P with a
deterministic one P̃. For this purpose we assume that the original problem P is such that
S(f, · ) ∈ L1(Ω,Σ,P, G) (:= L1(Ω, G)) for all f ∈ F . Then define S̃ : F → L1(Ω, G) by setting(

S̃(f)
)
(ω) = S(f, ω) (ω ∈ Ω) (24)

and put
P̃ = (F,L1(Ω, G), S̃, K,ΛF ). (25)

The behavior of the stochastic problem P with respect to semi-adaptive deterministic algo-
rithms is related to that of P̃ in the deterministic setting as follows.

Lemma 4.1. Let A be a semi-adaptive algorithm for P and let N1 be given by (12). Then

e(S,A, F × Ω, G) ≥ sup
f,g∈F,N1(f)=N1(g)

E ‖S̃(f)− S̃(g)‖L1(Ω,G). (26)

Moreover, for n ∈ N0,

edsa
n (S, F × Ω, G) ≥ 1

2
edet
n (S̃, F, L1(Ω, G)). (27)

Proof. We have

e(S,A, F × Ω, G) = sup
f∈F

E ‖S(f, ω)− A(f, ω)‖G

=
1

2
sup

f,g∈F,N1(f)=N1(g)

E (‖S(f, ω)− A(f, ω)‖G + ‖S(g, ω)− A(g, ω)‖G)

≥ 1

2
sup

f,g∈F,N1(f)=N1(g)

E ‖S(f, ω)− S(g, ω)‖G

=
1

2
sup

f,g∈F,N1(f)=N1(g)

‖S̃(f)− S̃(g)‖L1(Ω,G), (28)

which shows (26).
Now let n ∈ N0 and assume that A satisfies, in addition, card(A,F ) ≤ n. Then the right-

hand side of (26) is known to be connected with the deterministic n-th minimal error of S̃ as
follows, see also [17], Ch. 4.2. We define a mapping ϕ̃ : K∞ → L1(Ω, G) by choosing for each
a ∈ N1(F ) an fa ∈ F with N1(fa) = a and setting ϕ̃(a) = S̃(fa). For a ∈ K∞ \N1(F ) we set
ϕ̃(a) = 0. Consequently,

sup
f,g∈F,N1(f)=N1(g)

‖S̃(f)− S̃(g)‖L1(Ω,G) = sup
a∈N1(F )

sup
f,g∈F,N1(f)=N1(g)=a

‖S̃(f)− S̃(g)‖L1(Ω,G)

≥ sup
a∈N1(F )

sup
f∈F,N1(f)=a

‖S̃(f)− S̃(fa)‖L1(Ω,G)

= sup
a∈N1(F )

sup
f∈F,N1(f)=a

‖S̃(f)− ϕ̃(N1(f))‖L1(Ω,G)

= sup
f∈F
‖S̃(f)− ϕ̃(N1(f))‖L1(Ω,G). (29)

7



We claim that ϕ̃ ◦ N1 is the representation (8) of a suitable deterministic algorithm Ã =
((L̃i)

∞
i=1, (τ̃i)

∞
i=0, (ϕ̃i)

∞
i=1) for P̃. This is easily checked by taking any mapping π : ΛF ∪ΛΩ → ΛF

which is the identity on ΛF and setting

L̃i+1 = π ◦ Li, τ̃i = σi, ϕ̃i = ϕ̃|Ki (i ∈ N0).

It follows from the assumption on A and (11) that card(Ã, F ) = cardF (A,F ) ≤ n, hence

sup
f∈F
‖S(f, ω)− ϕ̃(N1(f))‖L1(Ω,G) ≥ edet

n (S̃, F, L1(Ω, G)). (30)

Combining (28) with (30) and taking the infimum over all N1 gives (27).

Let (γj)
∞
j=1 be a sequence of independent standard Gaussian random variables. The case

p = 2 of the following lemma was shown in [7]. The proof for general p follows similar lines.

Lemma 4.2. Let 0 < p <∞. Then there is a constant c(p) > 0 such that for all m ∈ N

P

ω ∈ Ω : min
J⊆{1,...,m},|J |≥m/2

(∑
j∈J

|γj(ω)|p
)1/p

≥ c(p)m1/p

 ≥ 7/8.

Proof. Let Bk
p denote the unit ball of Rk, endowed with the `p (quasi-)norm ‖(x1, . . . , xk)‖`p =(∑k

i=1 |xi|p
)1/p

. There is a constant c0(p) > 0 such that for all k ∈ N

Vol
(
Bk
p

)
≤ c0(p)kk−k/p, (31)

see, e.g., [14], relation 1.18 on p. 11. Define c(p) = 2−5−1/pc0(p)−1. Let m ∈ N and set
k = dm/2e. Then

P

{
min

J⊆{1,...,m},|J |≥m/2

∑
j∈J

|γj(ω)|p ≥ c(p)pm

}

= P

{
min

J⊆{1,...,m},|J |=k

∑
j∈J

|γj(ω)|p ≥ c(p)pm

}

≥ 1−
∑

J⊆{1,...,m},|J |=k

P

{∑
j∈J

|γj(ω)|p < c(p)pm

}

≥ 1− 22k P

{
k∑
j=1

|γj(ω)|p < 2c(p)pk

}
. (32)

Furthermore, using (31),

P

{
k∑
j=1

|γj(ω)|p < 2c(p)pk

}
= (2π)−k/2

∫
‖x‖`p≤c(p)(2k)1/p

e−|x|
2/2dx

≤ Vol
(
c(p)(2k)1/pBk

p

)
= c(p)k(2k)k/pVol

(
Bk
p

)
≤ 2k/pc(p)kc0(p)k ≤ 2−5k. (33)
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From (32) and (33) we conclude

P

{
min

J⊆{1,...,m},|J |≥m/2

∑
j∈J

|γj(ω)|p ≥ c(p)pm

}
≥ 1− 2−3k ≥ 7/8.

Let Λ′ ⊆ Λ be any nonempty subset such that Λ \ Λ′ ⊆ ΛΩ. For ω ∈ Ω let the mapping
Sω : F → G be given by

Sω(f) = S(f, ω) (f ∈ F ) (34)

and define the restricted problem Pω = (F,G, Sω, K,Λω), where

Λω = {λ( · , ω) : λ ∈ Λ′}.

The following lower bound for the randomized n-th minimal errors was shown in [7], Lemma
4. Here

∫ ∗
denotes the upper integral.

Lemma 4.3. Let ν be a probability measure on F supported by a finite set. Then for all n ∈ N0,

eran
n (S, F × Ω, G) ≥ 1

3
inf

D∈Σ,P(D)≥1/4

∫ ∗
D

eavg
2n (Sω, ν, G)dP(ω). (35)

Now we will use the results from Section 3. Let D, Z, F1, F be as in Section 3 and assume
that for each ω ∈ Ω, the mapping Sω : F → G given by (34) is the restriction to F of a linear
operator from F1 to G. Moreover, suppose there is a set Λ′ such that ∅ 6= Λ′ ⊆ Λ, Λ \Λ′ ⊆ ΛΩ,
and for each λ ∈ Λ′ and each ω ∈ Ω there is an x ∈ D such that

λ(f, ω) = δx(f) (f ∈ F ).

Combining Lemma 4.3 with Proposition 3.1, we obtain

Proposition 4.4. Let n̄, n ∈ N, n̄ > 8n, and assume that there are {wi}n̄i=1 ⊂ F so that (16)
is satisfied.
1. Assume that

∑n̄
i=1 βiwi ∈ F for all βi ∈ {−1, 1}, i = 1, . . . , n̄. Let (εi)

n̄
i=1 be independent,

centered Bernoulli random variables on another probability space (Ω1,Σ1,P1). Then

eran
n (S, F × Ω, G) ≥ 1

6
inf

D∈Σ,P(D)≥1/4

∫
D

min
K⊆{1,...,n̄},|K|≥n̄−4n

E 1

∥∥∥∥∥∑
k∈K

εkS(wk, ω)

∥∥∥∥∥
G

dP(ω). (36)

2. Assume that −wi ∈ F for i = 1, . . . , n̄. Then

eran
n (S, F × Ω, G) ≥ 1

3n̄
inf

D∈Σ,P(D)≥1/4

∫
D

min
K⊆{1,...,n̄},|K|≥n̄−4n

∑
k∈K

‖S(wk, ω)‖G. (37)

Corollary 4.5. Let G = R. Then there is a constant c > 0 such that the following holds. Under
the conditions of Proposition 4.4, assume that the random variables S(wi, ω) (i = 1, . . . , n̄) are
independent and Gaussian of mean zero. Then in case 1 of Proposition 4.4

eran
n (S, F × Ω,R) ≥ cn̄1/2 min

1≤i≤n̄

(
E |S(wi, ω)|2

)1/2
, (38)

while in case 2
eran
n (S, F × Ω,R) ≥ c min

1≤i≤n̄

(
E |S(wi, ω)|2

)1/2
. (39)
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Proof. Set σi = (E |S(wi, ω)|2)
1/2

, S(wi, ω) = σiγi(ω). Let c(p) for p = 1, 2 be the constants
from Lemma 4.2. First consider case 1 of Proposition 4.4. Then by Khintchine’s inequality, see
[11], there is a constant c0 > 0 such that

E 1

∣∣∣∣∣∑
k∈K

εkS(wk, ω)

∣∣∣∣∣ ≥ c0

(∑
k∈K

S(wk, ω)2

)1/2

.

Using this and Lemma 4.2, we obtain

P

{
min

K⊆{1,...,n̄},|K|≥n̄−4n
E 1

∣∣∣∣∣∑
k∈K

εkS(wk, ω)

∣∣∣∣∣ ≥ c0c(2)n̄1/2 min
1≤i≤n̄

σi

}

≥ P

 min
K⊆{1,...,n̄},|K|≥n̄−4n

(∑
k∈K

S(wk, ω)2

)1/2

≥ c(2)n̄1/2 min
1≤i≤n̄

σi


= P

 min
K⊆{1,...,n̄},|K|≥n̄/2

(∑
k∈K

σ2
kγk(ω)2

)1/2

≥ c(2)n̄1/2 min
1≤i≤n̄

σi


≥ P

 min
K⊆{1,...,n̄},|K|≥n̄/2

(∑
k∈K

γk(ω)2

)1/2

≥ c(2)n̄1/2

 ≥ 7

8
,

which together with (36) implies (38). In case 2 we argue similarly:

P

{
min

K⊆{1,...,n̄},|K|≥n̄−4n

∑
k∈K

|S(wk, ω)| ≥ c(1)n̄ min
1≤i≤n̄

σi

}

= P

{
min

K⊆{1,...,n̄},|K|≥n̄/2

∑
k∈K

σk|γk(ω)| ≥ c(1)n̄ min
1≤i≤n̄

σi

}

≥ P

{
min

K⊆{1,...,n̄},|K|≥n̄/2

∑
k∈K

|γk(ω)| ≥ c(1)n̄

}
≥ 7

8
.

With (37) this implies (39).

5 Stochastic integration

Now we consider stochastic integration. We restrict our analysis to deterministic integrands.
Let Q ⊂ Rd be a bounded Lipschitz domain, that is, a set which is the closure of a bounded
open set with locally Lipschitz boundary. Let Q be equipped with the Lebesgue measure.
Let 1 ≤ p ≤ ∞ and let Lp(Q) denote the space of equivalence classes of real-valued, Borel
measurable, p-integrable functions, equipped with the norm

‖f‖Lp(Q) =

(∫
Q

|f(x)|pdx
)1/p

for p <∞, and
‖f‖L∞(Q) = ess supx∈Q|f(x)|.
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In the sequel it is convenient to distinguish between the space of equivalence classes of
functions Lp(Q) and the linear space of all functions Lp(Q), thus f ∈ Lp(Q) iff [f ] ∈ Lp(Q),
where [f ] is the equivalence class of f with respect to equality up to a subset of Q of Lebesgue
measure zero. The latter is a linear space and ‖[f ]‖Lp(Q) is a semi-norm on it (we use though
the same symbol ‖f‖Lp(Q) for it).

Let ŴQ be an L2(Q)-isonormal process on some probability space (Ω,Σ,P), that is, a linear

isometric operator from L2(Q) to L2(Ω) such that ŴQ(f) is standard Gaussian for all f ∈ L2(Q)

with ‖f‖L2(Q) = 1 (see, e.g., [13]). The stochastic integral of f ∈ L2(Q) with respect to ŴQ is
defined as ∫

Q

f(x)dŴQ := ŴQ(f). (40)

For our purposes we need a suitable pathwise defined version

WQ : L2(Q)× Ω→ R (41)

such that WQ(f, ω) is linear in f for each ω ∈ Ω, and for each f ∈ L2(Q)

WQ(f, · ) = ŴQ(f), (42)

with equality meant in L2(Ω). Let (fi)i∈I , I a suitable index set, be a Hamel basis of L2(Q).
For each i ∈ I let gi = gi(ω) be a representative of the equivalence class ŴQ(fi) ∈ L2(Ω). Then
we set W̃Q(fi, ω) = gi(ω) for i ∈ I and ω ∈ Ω and extend the so-defined mapping by linearity
to all of L2(Q). Finally, we define WQ(f, ω) = W̃Q([f ], ω) for f ∈ L2(Q). It follows from the

linearity of ŴQ that WQ is as required.
Now let F be any nonempty subset of L2(Q), G = R, K = R ∪ K2, where K2 is any

non-empty set, and
Λ = Λ1 ∪ Λ2, (43)

where Λ1 = {δ1
t : t ∈ Q}, with δ1

t (f, ω) = f(t), and Λ2 is a non-empty set of mappings from Ω
to K2. Thus, formulated in the terminology above, we consider the problem

PQ = (F, (Ω,Σ,P),R,WQ, K,Λ). (44)

Note that with D = Q, Z = R, Λ′ = Λ1 the assumptions formulated before Proposition 4.4 are
satisfied.

Let Q0 ⊆ Q,

Q0 =
d∏
i=1

[ai, ai + b]. (45)

be a cube of side-length b > 0, let m ∈ N and let

Q0 =
md⋃
j=1

Q0,j

be the partition of Q0 into md congruent cubes of disjoint interior. Let xj denote the point in
Q0,j with minimal coordinates. Furthermore, let ψ be a C∞ function on Rd with support in
[0, 1]d satisfying ‖ψ‖L2(Rd) = 1. Define for x ∈ Q

ψj(x) = ψ(b−1m(x− xj)) (j = 1, . . . ,md). (46)

11



We have (
E |WQ(ψj, ω)|2

)1/2
= ‖ψj‖L2(Q) = bd/2m−d/2. (47)

Denote

Ψ1
m =


md∑
j=1

αjψj : αj ∈ {−1, 1}

 , Ψ2
m =

{
βψj : β ∈ {−1, 1}, 1 ≤ j ≤ md

}
.

Finally, let JF : F → L2(Q) be the embedding map.

Proposition 5.1. There are constants c1, c2, c3 > 0 such that the following hold: for all m,n ∈
N with md > 8n

eran
n (WQ, F × Ω,R) ≥ c1 sup{κ ≥ 0 : κΨ1

m ⊆ F} (48)

eran
n (WQ, F × Ω,R) ≥ c2m

−d/2 sup{κ ≥ 0 : κΨ2
m ⊆ F} (49)

and for all n ∈ N
edsa
n (WQ, F × Ω,R) ≥ c3e

det
n (JF , F, L2(Q)). (50)

Note that Proposition 5.1 holds for arbitrary Λ2, see (43), including the (strongest) case of
full information about ω, that is, K2 = Ω and Λ2 = {IdΩ}. Relation (50) is due to Przyby lowicz
[15].

Proof. Let m,n ∈ N, md > 8n. Let κ ≥ 0, to be fixed later on and put wj = κψj for
j = 1, . . . ,md. By (47) and the linearity of WQ in the first argument,(

E |WQ(wj, ω)|2
)1/2

= κ
(
E |WQ(ψj, ω)|2

)1/2
= κbd/2m−d/2. (51)

Moreover, the random variables WQ(wj, ω) (j = 1, . . . ,md) are independent and Gaussian of
mean zero. To show (48), let κ be such that κΨ1

m ⊆ F . From (38) of Corollary 4.5 with n̄ = md

we conclude, using also (51),

eran
n (WQ, F × Ω,R) ≥ cmd/2 min

1≤i≤n̄

(
E |WQ(wi, ω)|2

)1/2 ≥ cκ, (52)

showing (48). Now let κ be such that κΨ2
m ⊆ F . Using (39) and (51), we get

eran
n (WQ, F × Ω,R) ≥ c min

1≤i≤n̄

(
E |WQ(wi, ω)|2

)1/2 ≥ cκm−d/2, (53)

which gives (49).
Finally, to show (50), let A be a deterministic semi-adaptive algorithm for PQ with

card(A,F ) ≤ n and let N1 be given by (12). It follows from (26) of Lemma 4.1 that

e(WQ, A, F × Ω,R) ≥ sup
f,g∈F,N1(f)=N1(g)

‖WQ(f, · )−WQ(g, · )‖L1(Ω)

≥ c sup
f,g∈F,N1(f)=N1(g)

‖f − g‖L2(Q). (54)

Arguing as in the proof of (27) of Lemma 4.1 yields (50).
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Next we give a general upper bound. Here we specify Λ2 from (43) to be the class Λ2,0 of
linear functionals of the stochastic process, more precisely

Λ2,0 = {δ2
h : h ∈ L2(Q)}, (55)

where

δ2
h(f, ω) = WQ(h, ω) (f ∈ F, ω ∈ Ω). (56)

Thus, K = K2 = R. Fix a finite dimensional subspace H ⊂ L2(Q). Let n ∈ N, xi ∈ Q, gi ∈ H
(i = 1, . . . , n) and define T : F → L2(Q) by

Tf =
n∑
i=1

f(xi)gi (f ∈ F ).

Moreover, let (Ω1,Σ1,P1) be another probability space, let ξi and ζi be random variables on
(Ω1,Σ1,P1) with values in Q and H, respectively. For ω1 ∈ Ω1 define

Tω1f =
n∑
i=1

f(ξi(ω1))ζi(ω1) (f ∈ F ).

Lemma 5.2.

edsa
2n (WQ, F × Ω,R) ≤ sup

f∈F
‖f − Tf‖L2(Q) (57)

eran
2n (WQ, F × Ω,R) ≤ sup

f∈F

(
E P1‖f − Tω1f‖2

L2(Q)

)1/2
. (58)

Suppose that F is relatively compact in L2(Q) and there is an m ∈ N and Borel measurable
mappings Φi : Rm → Q, Θi : Rm → H (i = 1, . . . , n), such that if (γj)

m
j=1 is a sequence of in-

dependent standard Gaussian random variables, then
(
(Φi(γ1, . . . , γm))ni=1, (Θi(γ1, . . . , γm))ni=1

)
and

(
(ξi(ω1))ni=1, (ζi(ω1))ni=1

)
have the same distribution. Then

edet
m+2n(WQ, F × Ω,R) ≤ sup

f∈F

(
E P1‖f − Tω1f‖2

L2(Q)

)1/2
. (59)

Proof. We define the algorithm A0 for f ∈ F and ω ∈ Ω by

A0(f, ω) = WQ(Tf, ω) =
n∑
i=1

f(xi)WQ(gi, ω).

Clearly, A0 ∈ A dsa
2n (PQ) and

e(WQ, A0, F × Ω,R) = sup
f∈F

E |WQ(f, ω)− A0(f, ω)|

≤ sup
f∈F

(
E |WQ(f, ω)−WQ(Tf, ω)|2

)1/2
= sup

f∈F
‖f − Tf‖L2(Q),

which gives (57). Now let (hl)
M
l=1 be an orthonormal basis of H. For f ∈ F , ω ∈ Ω, and ω1 ∈ Ω1

we set

Aω1(f, ω) = WQ(Tω1f, ω) =
n∑
i=1

f(ξi(ω1))WQ(ζi(ω1), ω) (60)

=
n∑
i=1

M∑
l=1

f(ξi(ω1))(ζi(ω1), hl)WQ(hl, ω). (61)
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Then A = ((Ω1,Σ1,P1), (Aω1)ω1∈Ω1) belongs to A ran
2n (PQ). Indeed, the statement about the

cardinality is a consequence of representation (60), while measurability follows from (61). Sim-
ilarly to the deterministic case we conclude

e(WQ, A, F × Ω,R)2 ≤ sup
f∈F

E P1×P|WQ(f, ω)− Aω1(f, ω)|2

= sup
f∈F

E P1E P|WQ(f, ω)−WQ(Tω1f, ω)|2

= sup
f∈F

E P1‖f − Tω1f‖2
L2(Q).

This implies (58).
To show (59), let δ > 0 and let F0 ⊆ F be a finite δ-net of F , i.e.,

sup
f∈F

min
g∈F0

‖f − g‖L2(Q) ≤ δ. (62)

We represent the randomized algorithm A above as a deterministic algorithm Ã which exploits
the randomness of the underlying probability space (Ω,Σ,P). Let (gj)

m
j=1 be an orhonormal

system in L2(Q) orthogonal to span(H,F0). We define Ã = ((L̃i)
∞
i=1, (τ̃i)

∞
i=0, (ϕ̃i)

∞
i=1) as follows.

For i ∈ N and (z1, . . . , zi−1) ∈ Ri put

L̃i(z1, . . . , zi−1) =


δ2
gi

if 1 ≤ i ≤ m

δ1
Φi−m(z1,...,zm) if m < i ≤ m+ n

δ2
Θi−m−n(z1,...,zm) if m+ n < i ≤ m+ 2n

δ2
0 if m+ 2n < i.

(63)

Furthermore, we set

τ̃1 = · · · = τ̃m+2n−1 = 0, τ̃m+2n = 1, τ̃i = 0 (i > m+ 2n) (64)

ϕ̃m+2n(z1, . . . , zm+2n) =
n∑
j=1

zm+jzm+n+j, ϕ̃i ≡ 0 (i 6= m+ 2n). (65)

Now we fix f ∈ F . Then for each ω ∈ Ω

ai :=
(
L̃i(a1, . . . , ai−1)

)
(f, ω) =


WQ(gi, ω) if 1 ≤ i ≤ m
f(Φi−m(a1, . . . , am)) if m < i ≤ m+ n
WQ(Θi−m−n(a1, . . . , am), ω) if m+ n < i ≤ m+ 2n.

Note that a1, . . . , am are independent standard Gaussian random variables. Moreover,

Ã(f, ω) =
n∑
j=1

am+jam+n+j =
n∑
j=1

f(Φj(a1, . . . , am))WQ(Θj(a1, . . . , am), ω)

=
n∑
j=1

M∑
l=1

f(Φj(a1, . . . , am))(Θj(a1, . . . , am), hl)WQ(hl, ω). (66)

It follows that Ã ∈ A det
m+2n(PQ). Let f0 ∈ F0 be such that ‖f − f0‖L2(Q) ≤ δ. Then

EP|WQ(f, ω)− Ã(f, ω)| ≤ EP|WQ(f0, ω)− Ã(f, ω)|+ δ. (67)
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The following relations hold. To justify the step from (68) to (69) below, we note that the
(gj)

m
j=1 are orthogonal to f0 and (hl)

M
l=1, hence the random variables (aj)

m
j=1 = (WQ(gj, ω))mj=1 are

independent of WQ(f0, ω) and (WQ(hl, ω))Ml=1. The step from (70) to (71) uses the distribution
assumption of the lemma.

EP(WQ(f0, ω)− Ã(f, ω))2

= EP

(
WQ(f0, ω)−

n∑
j=1

M∑
l=1

f(Φj(a1, . . . , am))(Θj(a1, . . . , am), hl)WQ(hl, ω)

)2

(68)

= EP

∥∥∥∥∥f0 −
n∑
j=1

M∑
l=1

f(Φj(a1, . . . , am))(Θj(a1, . . . , am), hl)hl

∥∥∥∥∥
2

L2(Q)

(69)

= EP

∥∥∥∥∥f0 −
n∑
j=1

f(Φj(a1, . . . , am))Θj(a1, . . . , am)

∥∥∥∥∥
2

L2(Q)

(70)

= EP1

∥∥∥∥∥f0 −
n∑
j=1

f(ξj(ω1))ζj(ω1)

∥∥∥∥∥
2

L2(Q)

(71)

= EP1 ‖f0 − Tω1f‖
2
L2(Q) ≤ EP1

(
‖f − Tω1f‖L2(Q) + δ

)2
. (72)

Since δ > 0 was arbitrary, (67) and (72) imply (59).

6 Stochastic integration of functions from Sobolev spaces

Let 1 ≤ p ≤ ∞. For r ∈ N, the Sobolev space W r
p (Q) consists of all equivalence classes of

functions f ∈ Lp(Q) such that for all α = (α1, . . . , αd) ∈ Nd
0 with |α| :=

∑d
j=1 αj ≤ r, the

generalized partial derivative Dαf belongs to Lp(Q). The norm on W r
p (Q) is defined as

‖f‖W r
p (Q) =

∑
|α|≤r

‖Dαf‖pLp(Q)

1/p

(73)

if p <∞, and
‖f‖W r

∞(Q) = max
|α|≤r
‖Dαf‖L∞(Q). (74)

For r = 0 we set W 0
p (Q) := Lp(Q). Let C(Q) denote the space of continuous functions on

Q, endowed with the supremum norm. If r/d > max(1/p − 1/2, 0), then W r
p (Q) is compactly

embedded into L2(Q), and we denote the respective embedding map by Jrp . Furthermore,
W r
p (Q) is continuously embedded into C(Q) if and only if

p = 1 and r/d ≥ 1
or

1 < p ≤ ∞ and r/d > 1/p,

 (75)

see [1], Ch. 5.
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We remain in the same framework as described in Section 5, see (43) and (44). If (75)
holds and the deterministic semi-adaptive setting is concerned, we consider W r

p (Q) as identified
with a subset of C(Q), hence, function values at points of Q are well-defined. Here we set
F = BW r

p (Q). In the other cases it is convenient to consider also the respective Sobolev spaces
of functions, which we denote by Wr

p(Q), thus f ∈ Wr
p(Q) iff [f ] ∈ W r

p (Q). If we are in
the deterministic adaptive or in the randomized setting, we put F = BWr

p(Q). Finally, if the
deterministic semi-adaptive setting is considered and (75) does not hold, the lower bound
statement edsa

n (WQ, BWr
p(Q) × Ω,R) � 1 would be trivial, because function values at finitely

many deterministic points could be arbitrarily perturbed without changing the class of the
function and thus without changing the solution. Here we consider, less trivially, the dense
subset BWr

p(Q) ∩ C(Q) of BWr
p(Q). Relation (78) shows that even then no nontrivial rate can

hold for deterministic semi-adaptive algorithms, that is, for algorithms that use deterministic
sampling of the integrand.

The following result gives the n-th minimal errors in all three settings and thus the respective
complexities.

Theorem 6.1. Let d, r ∈ N, 1 ≤ p, q ≤ ∞, r/d > max(1/p− 1/2, 0). Then

edet
n (WQ, BWr

p(Q) × Ω,R) � eran
n (WQ, BWr

p(Q) × Ω,R) � n−
r
d

+max( 1
p
− 1

2
,0) (76)

edsa
n (WQ, BW r

p (Q) × Ω,R) � n−
r
d

+max( 1
p
− 1

2
,0) if

r

d
>

1

p
∨
(
r

d
=

1

p
∧ p = 1

)
(77)

edsa
n (WQ, (BWr

p(Q) ∩ C(Q))× Ω,R) � 1 if
r

d
<

1

p
∨
(
r

d
=

1

p
∧ p > 1

)
. (78)

To prove the upper bounds we will use approximation results from [6]. We recall some
details of the construction, for full background we refer to [6]. For a set B let F (B) denote the
set of all real-valued functions on B. We start with randomly shifted interpolation on [0, 1]d.
Fix % ∈ N0, 0 < δ < 1, and let

Pf =
κ∑
j=1

f(zj)πj (f ∈ F ([0, 1]d))

be for d = 1 the Lagrange interpolation operator of degree % and for d > 1 its tensor product,
where (zj)

κ
j=1 is the uniform grid on [0, 1− δ]d and (πj)

κ
j=1 are the respective Lagrange polyno-

mials of degree d% on Rd. Let θ be a uniformly distributed on [0, 1]d random variable, defined
on a probability space (Ω1,Σ1,P1). For a function f ∈ F ([0, 1]d) put

(Pω1f) (x) =
κ∑
j=1

f(zj + δθ(ω1))πj(x− δθ(ω1)) (x ∈ Rd). (79)

Now we consider the Lipschitz domain Q and apply the operator Pω1 locally. We let x0 ∈ Rd

and b > 0 be such that
Q ⊂ Q̃ := x0 + [0, b]d. (80)

For l ∈ N0 let

Q̃ =
2dl⋃
i=1

Qli
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be the partition of Q̃ into 2dl cubes of sidelength b2−l and of disjoint interior. Let xli denote
the point in Qli with minimal coordinates and let

Il = {i : 1 ≤ i ≤ 2dl, Qli ⊆ Q}. (81)

Finally, we fix a σ ∈ N0 and set for f ∈ F (Q)

(Pl,ω1f)(x) =
∑
i∈Il

κ∑
j=1

f(xli+ b 2−l(zj +δθ(ω1)))ηli(x)πj(b
−12l(x−xli)−δθ(ω1)) (x ∈ Q). (82)

Here ηli(x) are Cσ functions on Rd of bounded support, forming a partition of unity on Q, see
[6] for details. Moreover, let Pl,0 be the (deterministic) operator which results from (82) when
θ(ω1) is replaced by 0. The following was shown in [6], Prop. 3.3 and 4.1.

Proposition 6.2. Let r ∈ N, 1 ≤ p ≤ ∞, r/d > max(1/p − 1/2, 0), % ≥ r − 1, σ ≥ 0. Then
there are constants c1, c2, c3 > 0, l0 ∈ N0 such that for all l ≥ l0

sup
f∈BWr

p (Q)

(E P1‖f − Pl,ω1f‖2
L2(Q))

1/2 ≤ c22−rl+max(1/p−1/2,0)dl (83)

and, if r
d
> 1

p
∨
(
r
d

= 1
p
∧ p = 1

)
,

sup
f∈BWr

p (Q)

‖f − Pl,0f‖L2(Q) ≤ c32−rl+max(1/p−1/2,0)dl. (84)

Proof of Theorem 6.1. For l ∈ N0 let Hl ⊂ L2(Q) be defined by

Hl = span {ηliπ : i ∈ Il, π ∈ Pd%},

where Pd% denotes the space of polynomials on Rd of degree ≤ d%. The scaled and shifted
polynomials appearing in (82) all belong to this space. It follows from (82) that Pl,0 and Pl,ω1

have the form required for (57) and (58) of Lemma 5.2. Taking into account that by (81) we
have |Il| ≤ 2dl, the upper bound for eran

n (WQ, BWr
p(Q) × Ω,R) of (76) and that of (77) follow

directly from Lemma 5.2 and Proposition 6.2. The upper bound of (78) is trivial.
Finally, the upper bound of (76) for edet

n (WQ, BWr
p(Q)×Ω,R) follows from (83) by using (59)

of Lemma 5.2 with m = d and Φij : Rd → Q, Θij : Rd → Hl (i ∈ Il, j = 1, . . . , κ) given by

Φij(a1, . . . , ad) = xli + b 2−l
(
zj + δ(Φ(a1), . . . ,Φ(ad))

)
∈ Q

(Θij(a1, . . . , ad))(x) = ηli(x)πj
(
b−12l(x− xli)− δ(Φ(a1), . . . ,Φ(ad))

)
(x ∈ Q),

where Φ : R→ [0, 1] is the standard normal cumulative distribution function.
To show the lower bounds, let ψj be as in (46). It follows from the definitions (73) and (74)

that there are constants c1, c2 > 0 such that for m ∈ N, (αi)
md

i=1 ⊂ R

c1m
r−d/p‖(αi)‖`md

p
≤

∥∥∥∥∥∥
md∑
i=1

αiψi

∥∥∥∥∥∥
W r

p (Q)

≤ c2m
r−d/p‖(αi)‖`md

p
, (85)

hence
c−1

2 m−rΨ1
m ⊆ BWr

p(Q), c−1
2 m−r+d/pΨ2

m ⊆ BWr
p(Q). (86)
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Given n ∈ N, we set m = d(8n)1/de+ 1 and conclude from Proposition 5.1

eran
n (WQ, BWr

p(Q) × Ω,R) ≥ cmax(n−r/d, n−r/d+1/p−1/2), (87)

showing the lower bounds in (76) and (77). Under the assumptions of (78) Theorem 4.3 of [6]
states that there is a constant c > 0 such that for all n

edet
n (Jrp , BWr

p(Q) ∩ C(Q), L2(Q)) ≥ c.

Now the lower bound in (78) follows from (50).

Remark. The lower bounds of Theorem 6.1 hold for arbitrary Λ2, including the case of full
information about ω. The algorithms realizing the upper bounds use linear information of the
stochastic process, see (55) and (56).

Based on the results above and that of Section 5 of [6], statements similar to Theorem 6.1
can also be derived for Besov and Bessel potential spaces. Let us just mention one result in
this direction. Let 1 ≤ p, q ≤ ∞, r ∈ R, r/d > max(1/p − 1/2, 0), and let Br

pq(Q) denote the
Besov space. For the definition on Rd see [18, 19], the case of bounded Lipschitz domains can
be found in [20, 21]. Notice that for 1 ≤ p < ∞, r 6∈ N0, Br

pp(Q) is the Slobodeckij space
(see [18, 19]), considered for d = 1 in [3]. Under the above conditions, Br

pq(Q) is compactly
embedded into L2(Q).

Theorem 6.3. Let d ∈ N, 1 ≤ p, q ≤ ∞, r ∈ R, r/d > max(1/p− 1/2, 0). Then

edet
n (WQ, BBr

pq(Q) × Ω,R) � eran
n (WQ, BBr

pq(Q) × Ω,R) � n−
r
d

+max( 1
p
− 1

2
,0). (88)

The upper bounds in the case d = 1, 0 < r < 2, p = q ≥ 2 where obtained (under an
additional growth condition) by Eisenmann and Kruse in [3]. Theorem 6.3 shows that these
bounds are sharp.

Proof. The upper bounds follow from Proposition 5.1 of [6] in the same way as those of Theorem
6.1 from Proposition 6.2 above.

According to Theorem 2.3.2 of [2], there are constants c1, c2 > 0 such that for m ∈ N,
(αi)

md

i=1 ⊂ R

c1m
r−d/p‖(αi)‖`md

p
≤

∥∥∥∥∥∥
md∑
i=1

αiψi

∥∥∥∥∥∥
Br

pq(Q)

≤ c2m
r−d/p‖(αi)‖`md

p
.

The rest of the lower bound proof is analogous to that of Theorem 6.1.

Acknowledgment: The author is grateful to Raphael Kruse and Monika Eisenmann for
stimulating discussions. Parts of this paper were written while the author was guest of the
International Mathematical Research Institute MATRIX, Melbourne, during the program ’On
the frontiers of high dimensional computation’.

18



References

[1] R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975.

[2] D. E. Edmunds, H. Triebel, Function Spaces, Entropy Numbers, Differential Operators,
Cambridge Univ. Press, Cambridge, 1996.

[3] M. Eisenmann, R. Kruse, Two quadrature rules for stochastic Itô-integrals with fractional
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