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Abstract We continue the study of restricted Monte Carlo algorithms in a general
setting. Here we show a lower bound for minimal errors in the setting with finite
restriction in terms of deterministic minimal errors. This generalizes a result of
[11] to the adaptive setting. As a consequence, the lower bounds on the number of
random bits from [11] also hold in this setting. We also derive a lower bound on the
number of needed bits for integration of Lipschitz functions over the Wiener space,
complementing a result of [5].

1 Introduction

Restricted Monte Carlo algorithms were considered in [12, 13, 16, 11, 14, 3, 17,
4, 5, 6]. Restriction usually means that the algorithm has access only to random
bits or to random variables with finite range. Most of these papers on restricted
randomized algorithms consider the non-adaptive case. Only [5] includes adaptivity,
but considers a class of algorithms where each information call is followed by one
random bit call.
A general definition restricted Monte Carlo algorithms was given in [10]. It

extends the previous notions in two ways: Firstly, it includes full adaptivity, and
secondly, it includes models in which the algorithms have access to an arbitrary,
but fixed set of random variables, for example, uniform distributions on [0, 1]. In
[10] the relation of restricted to unrestricted randomized algorithms was studied. In
particular, it was shown that for each such restricted setting there is a computational
problem that can be solved in the unrestricted randomized setting but not under the
restriction.
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The aim of the present paper is to continue the study of the restricted setting. The
main result is a lower bound forminimal errors in the settingwith a finite restriction in
terms of deterministic minimal errors. This generalizes a corresponding result from
[11], see Proposition 1 there, to the adaptive setting with arbitrary finite restriction.
The formal proof in this setting is technically more involved. As a consequence the
lower bounds on the number of random bits from [11] also hold in this setting.
Another corollary concerns integration of Lipschitz functions over the Wiener space
[5]. It shows that the number of random bits used in the algorithm from [5] is optimal,
up to logarithmic factors.

2 Restricted randomized algorithms in a general setting

We work in the framework of information-based complexity theory (IBC) [13, 15],
using specifically the general approach from [7, 8].We recall the notion of a restricted
randomized algorithm as recently introduced in [10]. This section is kept general,
for specific examples illustrating this setup we refer to the integration problem
considered in [10] as well as to the problems studied in Section 4.
We consider an abstract numerical problem

P = (𝐹, 𝐺, 𝑆, 𝐾,Λ), (1)

where 𝐹 and 𝐾 are a non-empty sets, 𝐺 is a Banach space, 𝑆 a mapping from 𝐹 to
𝐺, and Λ a nonempty set of mappings from 𝐹 to 𝐾 . The operator 𝑆 is understood to
be the solution operator that sends the input 𝑓 ∈ 𝐹 to the exact solution 𝑆( 𝑓 ) and Λ
is the set of information functionals about the input 𝑓 ∈ 𝐹 that can be exploited by
an algorithm.
A probability space with access restriction is a tuple

R =
(
(Ω,Σ, P), 𝐾 ′,Λ′) , (2)

with (Ω,Σ, P) a probability space, 𝐾 ′ a non-empty set, and Λ′ a non-empty set of
mappings from Ω to 𝐾 ′. Define

�̄� = 𝐾 ¤∪𝐾 ′, Λ̄ = Λ ¤∪Λ′,

where ¤∪ is the disjoint union, and for _ ∈ Λ̄, 𝑓 ∈ 𝐹, 𝜔 ∈ Ω we set

_( 𝑓 , 𝜔) =
{
_( 𝑓 ) if _ ∈ Λ

_(𝜔) if _ ∈ Λ′.

An R-restricted randomized algorithm for problem P is a tuple

𝐴 = ((𝐿𝑖)∞𝑖=1, (𝜏𝑖)
∞
𝑖=0, (𝜑𝑖)

∞
𝑖=0)

such that 𝐿1 ∈ Λ̄, 𝜏0 ∈ {0, 1}, 𝜑0 ∈ 𝐺, and for 𝑖 ∈ N
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𝐿𝑖+1 : �̄� 𝑖 → Λ̄, 𝜏𝑖 : �̄� 𝑖 → {0, 1}, 𝜑𝑖 : �̄� 𝑖 → 𝐺

are any mappings. Given 𝑓 ∈ 𝐹 and𝜔 ∈ Ω, we define (_𝑖)∞𝑖=1 with _𝑖 ∈ Λ̄ as follows:

_1 = 𝐿1, _𝑖 = 𝐿𝑖 (_1 ( 𝑓 , 𝜔), . . . , _𝑖−1 ( 𝑓 , 𝜔)) (𝑖 ≥ 2). (3)

If 𝜏0 = 1, we define

cardΛ̄ (𝐴, 𝑓 , 𝜔) = cardΛ (𝐴, 𝑓 , 𝜔) = cardΛ′ (𝐴, 𝑓 , 𝜔) = 0.

If 𝜏0 = 0, let cardΛ̄ (𝐴, 𝑓 , 𝜔) be the first integer 𝑛 ≥ 1 with

𝜏𝑛 (_1 ( 𝑓 , 𝜔), . . . , _𝑛 ( 𝑓 , 𝜔)) = 1,

if there is such an 𝑛. If 𝜏0 = 0 and no such 𝑛 ∈ N exists, put cardΛ̄ (𝐴, 𝑓 , 𝜔) = ∞.
Furthermore, set

cardΛ (𝐴, 𝑓 , 𝜔) = |{𝑘 ≤ cardΛ̄ (𝐴, 𝑓 , 𝜔) : _𝑘 ∈ Λ}|
cardΛ′ (𝐴, 𝑓 , 𝜔) = |{𝑘 ≤ cardΛ̄ (𝐴, 𝑓 , 𝜔) : _𝑘 ∈ Λ′}|.

We have cardΛ̄ (𝐴, 𝑓 , 𝜔) = cardΛ (𝐴, 𝑓 , 𝜔) + cardΛ′ (𝐴, 𝑓 , 𝜔). The output 𝐴( 𝑓 , 𝜔) of
algorithm 𝐴 at input ( 𝑓 , 𝜔) is defined as

𝐴( 𝑓 , 𝜔) =
{
𝜑0 if cardΛ̄ (𝐴, 𝑓 , 𝜔) ∈ {0,∞}

𝜑𝑛 (_1 ( 𝑓 , 𝜔), . . . , _𝑛 ( 𝑓 , 𝜔)) if 1 ≤ cardΛ̄ (𝐴, 𝑓 , 𝜔) = 𝑛 < ∞.
(4)

Thus, a restricted randomized algorithm can access the randomness of (Ω,Σ, P) only
through the functionals _(𝜔) for _ ∈ Λ′.
The set of allR-restricted randomized algorithms forP is denoted byAran (P,R).

Let Aranmeas (P,R) be the subset of those 𝐴 ∈ Aran (P,R) with the following proper-
ties: For each 𝑓 ∈ 𝐹 the mappings

𝜔 → cardΛ (𝐴, 𝑓 , 𝜔) ∈ N0 ∪ {∞}, 𝜔 → cardΛ′ (𝐴, 𝑓 , 𝜔) ∈ N0 ∪ {∞}

(and hence𝜔 → cardΛ̄ (𝐴, 𝑓 , 𝜔)) areΣ-measurable and themapping𝜔 → 𝐴( 𝑓 , 𝜔) ∈
𝐺 is Σ-to-Borel measurable and P-almost surely separably valued, the latter meaning
that there is a separable subspace𝐺 𝑓 ⊂ 𝐺 such that P({𝜔 ∈ Ω : 𝐴( 𝑓 , 𝜔) ∈ 𝐺 𝑓 }) =
1. The error of 𝐴 ∈ Aranmeas (P,R) is defined as

𝑒(P, 𝐴) = sup
𝑓 ∈𝐹
E ‖𝑆( 𝑓 ) − 𝐴( 𝑓 , 𝜔)‖𝐺 . (5)

Given 𝑛, 𝑘 ∈ N0, we define Aran𝑛,𝑘 (P,R) to be the set of those 𝐴 ∈ Aranmeas (P,R)
satisfying for each 𝑓 ∈ 𝐹

E cardΛ (𝐴, 𝑓 , 𝜔) ≤ 𝑛, E cardΛ′ (𝐴, 𝑓 , 𝜔) ≤ 𝑘.
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The (𝑛, 𝑘)-th minimal R-restricted randomized error of 𝑆 is defined as

𝑒ran𝑛,𝑘 (P,R) = inf
𝐴∈Aran

𝑛,𝑘
(P,R)

𝑒(P, 𝐴). (6)

Special cases are the following: An access restriction R is called finite, if

|𝐾 ′ | < ∞, _−1 ({𝑢}) ∈ Σ (_′ ∈ Λ′, 𝑢 ∈ 𝐾 ′). (7)

In this case any R-restricted randomized algorithm satisfies the following. For fixed
𝑖 ∈ N0 and 𝑓 ∈ 𝐹 the functions (see (3))

𝜔 → 𝐿𝑖 (_1 ( 𝑓 , 𝜔), . . . , _𝑖−1 ( 𝑓 , 𝜔)) ∈ Λ, 𝜔 → _𝑖 ( 𝑓 , 𝜔) ∈ 𝐾

take finitely many values and are Σ-to-Σ0 (Λ)-measurable (respectively Σ-to-Σ0 (𝐾)-
measurable), where Σ0 (𝑀) denotes the 𝜎-algebra generated by the finite subsets of
a set 𝑀 . This is readily checked by induction. It follows that the mapping

𝜔 → 𝜏𝑖 (_1 ( 𝑓 , 𝜔), . . . , _𝑖 ( 𝑓 , 𝜔)) ∈ {0, 1}

is measurable and

𝜔 → 𝜑𝑖 (_1 ( 𝑓 , 𝜔), . . . , _𝑖 ( 𝑓 , 𝜔)) ∈ 𝐺

takes only finitely many values and is Σ-to-Borel-measurable. Consequently, for
each 𝑓 ∈ 𝐹 the functions card(𝐴, 𝑓 , 𝜔) and card′(𝐴, 𝑓 , 𝜔) are Σ-measurable,
𝐴( 𝑓 , 𝜔) takes only countably many values and is Σ-to-Borel-measurable, hence
𝐴 ∈ Aranmeas (P,R).
An access restriction is called bit restriction, if

|𝐾 ′ | = 2, Λ′ = {b 𝑗 : 𝑗 ∈ N} (8)

with b 𝑗 : Ω → 𝐾 ′ = {𝑢0, 𝑢1} an independent sequence of random variables such that

𝑃({b 𝑗 = 𝑢0}) = 𝑃({b 𝑗 = 𝑢1}) = 1/2, ( 𝑗 ∈ N). (9)

The corresponding restricted randomized algorithms are called bit Monte Carlo
algorithms. A non-adaptive version of these was considered in [11, 14, 3, 17].
Most frequently used is the case of uniform distributions on [0, 1]. This means

𝐾 ′ = [0, 1] and Λ′ = {[ 𝑗 : 𝑗 ∈ N}, with ([ 𝑗 ) being independent uniformly distribu-
ted on [0, 1] random variables over (Ω,Σ, P).
We also use the notion of a deterministic and of an (unrestricted) randomized

algorithm and the corresponding notions of minimal errors. For this we refer to
[7, 8], as well as to Section 2 of [10]. Let us however mention that the definition of a
deterministic algorithm follows a similar scheme as the one given above. More than
that, we can give an equivalent definition of a deterministic algorithm, viewing it as
a special case of a randomized algorithm with an arbitrary restriction R. Namely, a
deterministic algorithm is an R-restricted randomized algorithm 𝐴 with
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𝐿1 ∈ Λ, 𝐿𝑖+1 (𝐾 𝑖) ⊆ Λ (𝑖 ∈ N).

Consequently, for each 𝑓 ∈ 𝐹 and 𝜔, 𝜔1 ∈ Ω we have cardΛ′ (𝐴, 𝑓 , 𝜔) = 0 and

𝐴( 𝑓 ) := 𝐴( 𝑓 , 𝜔) = 𝐴( 𝑓 , 𝜔1)
card(𝐴, 𝑓 ) := cardΛ̄ (𝐴, 𝑓 , 𝜔) = cardΛ (𝐴, 𝑓 , 𝜔) = cardΛ (𝐴, 𝑓 , 𝜔1).

Thus, such an algorithm ignores R completely. For a deterministic algorithm 𝐴

relation (5) turns into

𝑒(P, 𝐴) = sup
𝑓 ∈𝐹

‖𝑆( 𝑓 ) − 𝐴( 𝑓 )‖𝐺 . (10)

A deterministic algorithm is in Aran
𝑛,𝑘

(P,R) iff sup 𝑓 ∈𝐹 card(𝐴, 𝑓 ) ≤ 𝑛. Taking the
infimum in (6) over all such 𝐴 gives the 𝑛-th minimal error in the deterministic
setting 𝑒det𝑛 (P). Clearly, 𝑒(P, 𝐴) and 𝑒det𝑛 (P) do not depend on R. It follows that for
each restriction R and 𝑛, 𝑘 ∈ N0

𝑒ran𝑛,𝑘 (P,R) ≤ 𝑒
det
𝑛 (P).

A restricted randomized algorithm is a special case of an (unrestricted) random-
ized algorithm. Being intuitively clear, this was formally checked in [10], Proposition
2.1 and Corollary 2.2. Moreover, it was shown there that for each restriction R and
𝑛, 𝑘 ∈ N0

𝑒ran𝑛 (P) ≤ 𝑒ran𝑛,𝑘 (P,R),

where 𝑒ran𝑛 (P) denotes the 𝑛-th minimal error in the randomized setting,

3 Deterministic vs. Restricted Randomized Algorithms

In this section we derive a relation betweenminimal restricted randomized errors and
minimal deterministic errors for general problems. Variants of the following result
have been obtained for non-adaptive random bit algorithms in [11, Prop. 1], and for
adaptive algorithms that ask for random bits and function values in alternating order
in [5]. Obviously, the latter does not permit to analyze a trade-off between the number
of random bits and the number of function values to be used in a computation.

Theorem 1 For all problems P = (𝐹, 𝐺, 𝑆, 𝐾,Λ) and probability spaces with finite
access restriction R =

(
(Ω,Σ, P), 𝐾 ′,Λ′) , see (7), and for all 𝑛, 𝑘 ∈ N0 we have

𝑒ran𝑛,𝑘 (P,R) ≥
1
3
𝑒det3𝑛 |𝐾 ′ |3𝑘 (P).

Without loss of generality in the sequel we only consider access restrictions with the
property 𝐾 ∩ 𝐾 ′ = ∅, thus �̄� = 𝐾 ∪ 𝐾 ′, Λ̄ = Λ ∪ Λ′.
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Lemma 1 Let 𝑛, 𝑘 ∈ N0, let 𝐴 be a randomized algorithm for P with access restric-
tion R =

(
(Ω,Σ, P), 𝐾 ′,Λ′) . For each 𝑓 ∈ 𝐹 let

𝐵 𝑓 = {𝜔 ∈ Ω : card(𝐴, 𝑓 , 𝜔) ≤ 𝑛, card′(𝐴, 𝑓 , 𝜔) ≤ 𝑘}. (11)

Then there is an R-restricted randomized algorithm �̃� for P̃ = (𝐹, �̃�, 𝑆,Λ, 𝐾),
where �̃� = 𝐺 ⊕ R and 𝑆 = (𝑆( 𝑓 ), 0), satisfying for all 𝑓 ∈ 𝐹 and 𝜔 ∈ Ω

card( �̃�, 𝑓 , 𝜔) ≤ 𝑛 (12)
card′( �̃�, 𝑓 , 𝜔) ≤ 𝑘 (13)

�̃�( 𝑓 , 𝜔) = (𝐴( 𝑓 , 𝜔) · 1𝐵 𝑓
(𝜔), 1𝐵 𝑓

(𝜔)). (14)

Proof Let 𝐴 = ((𝐿𝑖)∞𝑖=1, (𝜏𝑖)
∞
𝑖=0, (𝜑𝑖)

∞
𝑖=0). For 𝑖 ∈ N0 and 𝑎 = (𝑎1, . . . , 𝑎𝑖) ∈ 𝐾

𝑖 let

𝑑𝑖+1 (𝑎) = |{𝐿1, 𝐿2 (𝑎1), . . . , 𝐿𝑖+1 (𝑎1, . . . , 𝑎𝑖)} ∩ Λ|
𝑑 ′𝑖+1 (𝑎) = |{𝐿1, 𝐿2 (𝑎1), . . . , 𝐿𝑖+1 (𝑎1, . . . , 𝑎𝑖)} ∩ Λ′ |

Z𝑖 (𝑎) =
{
1 if (𝑑𝑖+1 (𝑎) > 𝑛) ∨ (𝑑 ′

𝑖+1 (𝑎) > 𝑘)
0 otherwise.

Now we define �̃� = ((𝐿𝑖)∞𝑖=1, (𝜏𝑖)
∞
𝑖=0, (�̃�𝑖)

∞
𝑖=0) by setting for 𝑖 ∈ N0 and 𝑎 ∈ 𝐾 𝑖

𝜏𝑖 (𝑎) = max(𝜏𝑖 (𝑎), Z𝑖 (𝑎))

�̃�𝑖 (𝑎) =
{
(𝜑𝑖 (𝑎), 1) if Z𝑖 (𝑎) ≤ 𝜏𝑖 (𝑎)
(0, 0) if Z𝑖 (𝑎) > 𝜏𝑖 (𝑎).

To show (12)–(14) we fix 𝑓 ∈ 𝐹, 𝜔 ∈ Ω and define

𝑎1 = 𝐿1 ( 𝑓 , 𝜔), 𝑎𝑖 = (𝐿𝑖 (𝑎1, . . . , 𝑎𝑖−1)) ( 𝑓 , 𝜔) (𝑖 ≥ 2).

Let𝑚 = card(𝐴, 𝑓 , 𝜔) and let 𝑞 be the smallest number 𝑞 ∈ N0with Z𝑞 (𝑎1, . . . , 𝑎𝑞) =
1. First assume that 𝜔 ∈ 𝐵 𝑓 . Then for all 𝑖 < 𝑚

(𝑑𝑖+1 (𝑎1, . . . , 𝑎𝑖) ≤ 𝑛) ∧ (𝑑 ′𝑖+1 (𝑎1, . . . , 𝑎𝑖) ≤ 𝑘),

thus Z𝑖 (𝑎1, . . . , 𝑎𝑖) = 0 and therefore 𝜏𝑖 (𝑎1, . . . , 𝑎𝑖) = 0. Furthermore,

Z𝑖 (𝑎1, . . . , 𝑎𝑚) ≤ 𝜏𝑚 (𝑎1, . . . , 𝑎𝑚) = 1,

which means card( �̃�, 𝑓 , 𝜔) = 𝑚,

card( �̃�, 𝑓 , 𝜔) = 𝑑𝑚 (𝑎1, . . . , 𝑎𝑚−1) ≤ 𝑛
card′( �̃�, 𝑓 , 𝜔) = 𝑑 ′𝑚 (𝑎1, . . . , 𝑎𝑚−1) ≤ 𝑘

�̃�( 𝑓 , 𝜔) = (𝜑𝑚 (𝑎1, . . . , 𝑎𝑚), 1) = (𝐴( 𝑓 , 𝜔), 1).

Now let 𝜔 ∈ Ω \ 𝐵 𝑓 , hence
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𝜏0 = 𝜏1 (𝑎1) = · · · = 𝜏𝑞 (𝑎1, . . . , 𝑎𝑞) = 0
(𝑑𝑞+1 (𝑎1, . . . , 𝑎𝑞) > 𝑛) ∨ (𝑑 ′𝑞+1 (𝑎1, . . . , 𝑎𝑞) > 𝑘),

thus 𝜏𝑞 (𝑎1, . . . , 𝑎𝑞) = 1. Consequently,

card( �̃�, 𝑓 , 𝜔) ≤ 𝑑𝑞 (𝑎1, . . . , 𝑎𝑞−1) ≤ 𝑛
card′( �̃�, 𝑓 , 𝜔) ≤ 𝑑 ′𝑞 (𝑎1, . . . , 𝑎𝑞−1) ≤ 𝑘

�̃�( 𝑓 , 𝜔) = (0, 0). �

The key ingredient of the proof of Theorem 1 is the following

Lemma 2 Let 𝑛, 𝑘 ∈ N0 and let 𝐴 be a randomized algorithm for P with finite access
restriction R =

(
(Ω,Σ, P), 𝐾 ′,Λ′) such that

card(𝐴, 𝑓 , 𝜔) ≤ 𝑛, card′(𝐴, 𝑓 , 𝜔) ≤ 𝑘 (15)

for all 𝑓 ∈ 𝐹 and 𝜔 ∈ Ω. Then there exists a deterministic algorithm 𝐴∗ for P with

𝐴∗ ( 𝑓 ) = E (𝐴( 𝑓 , ·)), card(𝐴∗, 𝑓 ) ≤ 𝑛|𝐾 ′ |𝑘 ( 𝑓 ∈ 𝐹). (16)

Proof Let P = (𝐹, 𝐺, 𝑆, 𝐾,Λ), 𝐴 = ((𝐿𝑖)∞𝑖=1, (𝜏𝑖)
∞
𝑖=0, (𝜑𝑖)

∞
𝑖=0). We argue by in-

duction over 𝑚 = 𝑛 + 𝑘 . If 𝑚 = 0, then 𝜏0 = 1, hence card(𝐴, 𝑓 , 𝜔) = 0, thus
𝐴( 𝑓 , 𝜔) = 𝜑0 for all 𝑓 ∈ 𝐹 and 𝜔 ∈ Ω, and the result follows.
Now let 𝑚 ≥ 1. We can assume that 𝜏0 = 0, otherwise 𝐴 satisfies (15) with

𝑛 = 𝑘 = 0 and we are back to the case 𝑚 = 0. Let �̃� ⊂ 𝐾 be defined by

�̃� =

{ {
𝑢 ∈ 𝐾 : 𝐿−11 ({𝑢}) ≠ ∅

}
if 𝐿1 ∈ Λ{

𝑢 ∈ 𝐾 ′ : P(𝐿−11 ({𝑢})) ≠ 0
}
if 𝐿1 ∈ Λ′.

For every 𝑢 ∈ �̃� we define a problem P𝑢 = (𝐹𝑢 , 𝐺, 𝑆𝑢 , 𝐾,Λ𝑢) and a probability
space with access restriction R𝑢 =

(
(Ω𝑢 ,Σ𝑢 , P𝑢), 𝐾 ′,Λ′

𝑢

)
as follows. If 𝐿1 ∈ Λ, we

set R𝑢 = R and

𝐹𝑢 = { 𝑓 ∈ 𝐹 : 𝐿1 ( 𝑓 ) = 𝑢}, 𝑆𝑢 = 𝑆 |𝐹𝑢 , Λ𝑢 = {_ |𝐹𝑢 : _ ∈ Λ}.

If 𝐿1 ∈ Λ′, we put P𝑢 = P and

Ω𝑢 = {𝜔 ∈ Ω : 𝐿1 (𝜔) = 𝑢}, Σ𝑢 = {𝐵 ∩Ω𝑢 : 𝐵 ∈ Σ}
P𝑢 (𝐶) = P (Ω𝑢)−1 P (𝐶) (𝐶 ∈ Σ𝑢), Λ′

𝑢 = {_′ |Ω𝑢
: _ ∈ Λ′}.

Let 𝜚𝑢 : Λ ∪ Λ′ → Λ𝑢 ∪ Λ′
𝑢 be defined as

𝜚𝑢 (_) =
{
_ |𝐹𝑢 if _ ∈ Λ

_ |Ω𝑢
if _ ∈ Λ′

and let 𝜎𝑢 : Λ𝑢 ∪ Λ′
𝑢 → Λ ∪ Λ′ be any mapping satisfying
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𝜚𝑢 ◦ 𝜎𝑢 = idΛ𝑢∪Λ′
𝑢
. (17)

Furthermore, we define a random algorithm 𝐴𝑢 = ((𝐿𝑖,𝑢)∞𝑖=1, (𝜏𝑖,𝑢)
∞
𝑖=0, (𝜑𝑖,𝑢)

∞
𝑖=0) for

P𝑢 with access restriction R𝑢 by setting for 𝑖 ≥ 0, 𝑧1, . . . , 𝑧𝑖 ∈ 𝐾

𝐿𝑖+1,𝑢 (𝑧1, . . . , 𝑧𝑖) =
(
𝜚𝑢 ◦ 𝐿𝑖+2

)
(𝑢, 𝑧1, . . . , 𝑧𝑖) (18)

𝜏𝑖,𝑢 (𝑧1, . . . , 𝑧𝑖) = 𝜏𝑖+1 (𝑢, 𝑧1, . . . , 𝑧𝑖) (19)

𝜑𝑖,𝑢 (𝑧1, . . . , 𝑧𝑖) = 𝜑𝑖+1 (𝑢, 𝑧1, . . . , 𝑧𝑖) (20)

(in this and similar situations below the case 𝑖 = 0 with variables 𝑧1, . . . , 𝑧𝑖 is
understood in the obvious way: no dependence on 𝑧1, . . . , 𝑧𝑖).
Next we establish the relation of the algorithms 𝐴𝑢 to 𝐴. Fix 𝑓 ∈ 𝐹𝑢 , 𝜔 ∈ Ω𝑢 ,

and let (𝑎𝑖)∞𝑖=1 ⊆ 𝐾 be given by

𝑎1 = 𝐿1 ( 𝑓 , 𝜔) = 𝑢 (21)
𝑎𝑖 =

(
𝐿𝑖 (𝑎1, . . . , 𝑎𝑖−1)

)
( 𝑓 , 𝜔) (𝑖 ≥ 2), (22)

and similarly (𝑎𝑖,𝑢)∞𝑖=1 ⊆ 𝐾 by

𝑎𝑖,𝑢 =
(
𝐿𝑖,𝑢 (𝑎1,𝑢 , . . . , 𝑎𝑖−1,𝑢)

)
( 𝑓 , 𝜔). (23)

We show by induction that

𝑎𝑖,𝑢 = 𝑎𝑖+1 (𝑖 ∈ N). (24)

Let 𝑖 = 1. Then (23), (18), (21), and (22) imply

𝑎1,𝑢 = 𝐿1,𝑢 ( 𝑓 , 𝜔) =
(
𝐿2 (𝑢)

)
( 𝑓 , 𝜔) =

(
𝐿2 (𝑎1)

)
( 𝑓 , 𝜔) = 𝑎2.

For the induction step we let 𝑗 ∈ N and suppose that (24) holds for all 𝑖 ≤ 𝑗 . Then
(23), (18), (24), and (22) yield

𝑎 𝑗+1,𝑢 = (𝐿 𝑗+1,𝑢 (𝑎1,𝑢 , . . . , 𝑎 𝑗 ,𝑢)) ( 𝑓 , 𝜔) = (𝐿 𝑗+2 (𝑢, 𝑎1,𝑢 , . . . , 𝑎 𝑗 ,𝑢)) ( 𝑓 , 𝜔)
= (𝐿 𝑗+2 (𝑎1, 𝑎2, . . . , 𝑎 𝑗+1)) ( 𝑓 , 𝜔) = 𝑎 𝑗+2.

This proves (24). As a consequence of this relation and of (18), (19), and (20) we
obtain for all 𝑖 ∈ N0

𝐿𝑖+1,𝑢 (𝑎1,𝑢 , . . . , 𝑎𝑖,𝑢) =
(
𝜚𝑢 ◦ 𝐿𝑖+2

)
(𝑢, 𝑎1,𝑢 , . . . , 𝑎𝑖,𝑢) =

(
𝜚𝑢 ◦ 𝐿𝑖+2

)
(𝑎1, . . . , 𝑎𝑖+1)

𝜏𝑖,𝑢 (𝑎1,𝑢 , . . . , 𝑎𝑖,𝑢) = 𝜏𝑖+1 (𝑢, 𝑎1,𝑢 , . . . , 𝑎𝑖,𝑢) = 𝜏𝑖+1 (𝑎1, . . . , 𝑎𝑖+1)
𝜑𝑖,𝑢 (𝑎1,𝑢 , . . . , 𝑎𝑖,𝑢) = 𝜑𝑖+1 (𝑢, 𝑎1,𝑢 , . . . , 𝑎𝑖,𝑢) = 𝜑𝑖+1 (𝑎1, . . . , 𝑎𝑖+1).

Hence, for all 𝑓 ∈ 𝐹𝑢 and 𝜔 ∈ Ω𝑢
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card(𝐴𝑢 , 𝑓 , 𝜔) = card(𝐴, 𝑓 , 𝜔) − 1
𝐴𝑢 ( 𝑓 , 𝜔) = 𝐴( 𝑓 , 𝜔). (25)

Furthermore, if 𝐿1 ∈ Λ, then

card(𝐴𝑢 , 𝑓 , 𝜔) = card(𝐴, 𝑓 , 𝜔) − 1 ≤ 𝑛 − 1
card′(𝐴𝑢 , 𝑓 , 𝜔) = card′(𝐴, 𝑓 , 𝜔) ≤ 𝑘,

and if 𝐿1 ∈ Λ′,

card(𝐴𝑢 , 𝑓 , 𝜔) = card(𝐴, 𝑓 , 𝜔) ≤ 𝑛
card′(𝐴𝑢 , 𝑓 , 𝜔) = card′(𝐴, 𝑓 , 𝜔) − 1 ≤ 𝑘 − 1.

Now we apply the induction assumption and obtain a deterministic algorithm

𝐴∗
𝑢 = ((𝐿∗𝑖,𝑢)∞𝑖=1, (𝜏

∗
𝑖,𝑢)∞𝑖=0, (𝜑

∗
𝑖,𝑢)∞𝑖=0)

for P𝑢 with
𝐴∗
𝑢 ( 𝑓 ) = E P𝑢 (𝐴𝑢 ( 𝑓 , ·)) (26)

and
card(𝐴∗

𝑢 , 𝑓 ) ≤
{
(𝑛 − 1) |𝐾 ′ |𝑘 if 𝐿1 ∈ Λ

𝑛|𝐾 ′ |𝑘−1 if 𝐿1 ∈ Λ′ (27)

for every 𝑓 ∈ 𝐹𝑢 .
Finally we use the algorithms 𝐴∗

𝑢 to compose a deterministic algorithm

𝐴∗ = ((𝐿∗𝑖 )∞𝑖=1, (𝜏
∗
𝑖 )∞𝑖=0, (𝜑

∗
𝑖 )∞𝑖=0)

for P. This and the completion of the proof is done separately for each of the cases
𝐿1 ∈ Λ and 𝐿1 ∈ Λ′.
If 𝐿1 ∈ Λ, then we set

𝐿∗1 = 𝐿1, 𝜏∗0 = 𝜏0 = 0, 𝜑∗0 = 𝜑0,

furthermore, for 𝑖 ∈ N, 𝑧1 ∈ �̃� , 𝑧2, . . . , 𝑧𝑖 ∈ 𝐾 we let (with 𝜎𝑧1 defined by (17))

𝐿∗𝑖+1 (𝑧1, . . . , 𝑧𝑖) =
(
𝜎𝑧1 ◦ 𝐿∗𝑖,𝑧1

)
(𝑧2, . . . , 𝑧𝑖) (28)

𝜏∗𝑖 (𝑧1, . . . , 𝑧𝑖) = 𝜏∗𝑖−1,𝑧1 (𝑧2, . . . , 𝑧𝑖) (29)

𝜑∗𝑖 (𝑧1, . . . , 𝑧𝑖) = 𝜑∗𝑖−1,𝑧1 (𝑧2, . . . , 𝑧𝑖). (30)

For 𝑖 ≥ 1, 𝑧1 ∈ 𝐾 \ �̃� , and 𝑧2, . . . , 𝑧𝑖 ∈ 𝐾 we define

𝐿∗𝑖+1 (𝑧1, . . . , 𝑧𝑖) = 𝐿1, 𝜏∗𝑖 (𝑧1, . . . , 𝑧𝑖) = 1, 𝜑∗𝑖 (𝑧1, . . . , 𝑧𝑖) = 𝜑0.

Let 𝑢 ∈ �̃� and 𝑓 ∈ 𝐹𝑢 . We show that
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𝐴∗ ( 𝑓 ) = 𝐴∗
𝑢 ( 𝑓 ) (31)

card(𝐴∗, 𝑓 ) = card(𝐴∗
𝑢 , 𝑓 ) + 1. (32)

Let (𝑏𝑖)∞𝑖=1 ⊆ 𝐾 be given by

𝑏1 = 𝐿
∗
1 ( 𝑓 ) = 𝐿1 ( 𝑓 ) = 𝑢 (33)

𝑏𝑖 =
(
𝐿∗𝑖 (𝑏1, . . . , 𝑏𝑖−1)

)
( 𝑓 ) (𝑖 ≥ 2), (34)

and similarly (𝑏𝑖,𝑢)∞𝑖=1 ⊆ 𝐾 by

𝑏𝑖,𝑢 =
(
𝐿∗𝑖,𝑢 (𝑏1,𝑢 , . . . , 𝑏𝑖−1,𝑢)

)
( 𝑓 ). (35)

Then
𝑏𝑖+1 = 𝑏𝑖,𝑢 (𝑖 ∈ N). (36)

Indeed, for 𝑖 = 1 we conclude from (34), (33), (28), and (35)

𝑏2 = (𝐿∗2 (𝑏1)) ( 𝑓 ) = (𝐿∗2 (𝑢)) ( 𝑓 ) = 𝐿
∗
1,𝑢 ( 𝑓 ) = 𝑏1,𝑢 .

Now let 𝑗 ∈ N and assume (36) holds for all 𝑖 ≤ 𝑗 . By (34), (33), (28), and (35)

𝑏 𝑗+2 = (𝐿∗𝑗+2 (𝑏1, 𝑏2, . . . , 𝑏 𝑗+1)) ( 𝑓 ) = (𝐿∗𝑗+2 (𝑢, 𝑏1,𝑢 , . . . , 𝑏 𝑗 ,𝑢)) ( 𝑓 )
= (𝐿∗𝑗+1,𝑢 (𝑏1,𝑢 , . . . , 𝑏 𝑗 ,𝑢)) ( 𝑓 ) = 𝑏 𝑗+1,𝑢 .

This proves (36). It follows from (36), (33), (29), and (30) that for all 𝑖 ∈ N0

𝜏∗𝑖+1 (𝑏1, . . . , 𝑏𝑖+1) = 𝜏
∗
𝑖+1 (𝑢, 𝑏1,𝑢 , . . . , 𝑏𝑖,𝑢) = 𝜏

∗
𝑖,𝑢 (𝑏1,𝑢 , . . . , 𝑏𝑖,𝑢)

𝜑∗𝑖+1 (𝑏1, . . . , 𝑏𝑖+1) = 𝜑
∗
𝑖+1 (𝑢, 𝑏1,𝑢 , . . . , 𝑏𝑖,𝑢) = 𝜑

∗
𝑖,𝑢 (𝑏1,𝑢 , . . . , 𝑏𝑖,𝑢).

This shows (31) and (32). From (31), (26), and (25) we conclude for 𝑢 ∈ �̃� , 𝑓 ∈ 𝐹𝑢 ,
recalling that R𝑢 = R,

𝐴∗ ( 𝑓 ) = 𝐴∗
𝑢 ( 𝑓 ) = E P (𝐴𝑢 ( 𝑓 , ·)) = E P (𝐴( 𝑓 , ·)).

Since ∪𝑢∈�̃�𝐹𝑢 = 𝐹, the first relation of (16) follows. The second relation is a direct
consequence of (32) and (27), completing the induction for the case 𝐿1 ∈ Λ.
If 𝐿1 ∈ Λ′, then we use the algorithms (𝐴∗

𝑢)𝑢∈�̃� for P𝑢 = P and Lemma 3 of [8]
to obtain a deterministic algorithm 𝐴∗ for P such that for 𝑓 ∈ 𝐹

𝐴∗ ( 𝑓 ) =
∑︁
𝑢∈�̃�

P(𝐿−11 ({𝑢})𝐴∗
𝑢 ( 𝑓 ) (37)

card(𝐴∗, 𝑓 ) =
∑︁
𝑢∈�̃�

card(𝐴∗
𝑢 , 𝑓 ). (38)

It follows from (37), (26), and (25) that
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𝐴∗ ( 𝑓 ) =
∑︁

𝑢∈𝐾 ′:P(𝐿−1
1 ( {𝑢 }))>0

P(𝐿−11 ({𝑢})E P𝑢 𝐴𝑢 ( 𝑓 , ·)

=
∑︁

𝑢∈𝐾 ′:P(𝐿−1
1 ( {𝑢 }))>0

∫
𝐿−1
1 ( {𝑢 })

𝐴𝑢 ( 𝑓 , 𝜔)𝑑P(𝜔)

=
∑︁

𝑢∈𝐾 ′:P(𝐿−1
1 ( {𝑢 }))>0

∫
𝐿−1
1 ( {𝑢 })

𝐴( 𝑓 , 𝜔)𝑑P(𝜔) = E P𝐴𝑢 ( 𝑓 , ·).

Furthermore, (27) and (38) imply card(𝐴∗, 𝑓 ) ≤ 𝑛|𝐾 ′ |𝑘 . �

Proof of Theorem 1 The proof is similar to the proof of [5, Lem. 11]. Let 𝛿 > 0 and
let

𝐴 = ((𝐿𝑖)∞𝑖=1, (𝜏𝑖)
∞
𝑖=0, (𝜑𝑖)

∞
𝑖=0) ∈ Aran𝑛,𝑘 (P,R)

be a randomized algorithm for P with restriction R satisfying

𝑒(𝐴,P) ≤ 𝑒ran𝑛,𝑘 (P,R) + 𝛿. (39)

For 𝑓 ∈ 𝐹 define

𝐵 𝑓 = {𝜔 ∈ Ω : card(𝐴, 𝑓 , 𝜔) ≤ 3𝑛, card′(𝐴, 𝑓 , 𝜔) ≤ 3𝑘}.

Observe that 𝐵 𝑓 ∈ Σ and 𝑃(𝐵 𝑓 ) ≥ 1/3. For the conditional expectation

E (𝐴( 𝑓 , ·) | 𝐵 𝑓 ) =
E

(
𝐴( 𝑓 , ·) · 1𝐵 𝑓

)
𝑃(𝐵 𝑓 )

of 𝐴( 𝑓 , ·) given 𝐵 𝑓 we obtain

3E ‖𝑆( 𝑓 ) − 𝐴( 𝑓 , ·)‖𝐺
≥ E

(
‖𝑆( 𝑓 ) − 𝐴( 𝑓 , ·)‖𝐺 | 𝐵 𝑓

)
≥

𝑆( 𝑓 ) − E (
𝐴( 𝑓 , ·) | 𝐵 𝑓

)
𝐺

(40)

by means of Jensen’s inequality. Our goal is now to design a deterministic algorithm
with input-output mapping 𝑓 ↦→ E (𝐴( 𝑓 , ·) | 𝐵 𝑓 ).
From Lemma 1 we conclude that there is an R-restricted randomized algorithm

�̃� = ((𝐿𝑖)∞𝑖=1, (𝜏𝑖)
∞
𝑖=0, (�̃�𝑖)

∞
𝑖=0) for P̃ = (𝐹, �̃�, 𝑆,Λ, 𝐾), where �̃� = 𝐺 ⊕ R and

𝑆( 𝑓 ) = (𝑆( 𝑓 ), 0) ( 𝑓 ∈ 𝐹), satisfying for all 𝑓 ∈ 𝐹 and 𝜔 ∈ Ω

card( �̃�, 𝑓 , 𝜔) ≤ 3𝑛, card′( �̃�, 𝑓 , 𝜔) ≤ 3𝑘,
�̃�( 𝑓 , 𝜔) = (𝐴( 𝑓 , 𝜔) · 1𝐵 𝑓

(𝜔), 1𝐵 𝑓
(𝜔)).

By Lemma 2 there is a deterministic algorithm 𝐴∗ = ((𝐿∗
𝑖
)∞
𝑖=1, (𝜏

∗
𝑖
)∞
𝑖=0, (𝜑

∗
𝑖
)∞
𝑖=0) for

P̃ such that for all 𝑓 ∈ 𝐹
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card(𝐴∗, 𝑓 ) ≤ 3𝑛|𝐾 ′ |3𝑘 , 𝐴∗ ( 𝑓 ) =
(∫
𝐵 𝑓

𝐴( 𝑓 , 𝜔)𝑑P(𝜔), P(𝐵 𝑓 )
)
.

It remains to modify 𝐴∗ as follows

�̃�∗ = ((𝐿∗𝑖 )∞𝑖=1, (𝜏
∗
𝑖 )∞𝑖=0, (𝜓

∗
𝑖 )∞𝑖=0),

where for 𝑖 ∈ N0 and 𝑎 ∈ 𝐾 𝑖

𝜓∗
𝑖 (𝑎) =

{
𝜑∗
𝑖,1 (𝑎)
𝜑∗
𝑖,2 (𝑎)

if 𝜑∗
𝑖,2 (𝑎) ≠ 0

0 if 𝜑∗
𝑖,2 (𝑎) = 0,

with 𝜑∗
𝑖
(𝑎) = (𝜑∗

𝑖,1 (𝑎), 𝜑
∗
𝑖,2 (𝑎)) being the splitting into the 𝐺 and R component.

Hence for each 𝑓 ∈ 𝐹

card( �̃�∗, 𝑓 ) ≤ 3𝑛|𝐾 ′ |3𝑘

�̃�∗ ( 𝑓 ) = E (𝐴( 𝑓 , ·) | 𝐵 𝑓 ),

and therefore we conclude, using (39) and (40),

𝑒det3𝑛 |𝐾 ′ |3𝑘 (P) ≤ 𝑒( �̃�∗, P̃) ≤ 3𝑒(𝐴,P) ≤ 3(𝑒ran𝑛,𝑘 (P,R) + 𝛿)

for each 𝛿 > 0. �

4 Applications

4.1 Integration of functions in Sobolev spaces

Let 𝑟, 𝑑 ∈ N, 1 ≤ 𝑝 < ∞,𝑄 = [0, 1]𝑑 , let𝐶 (𝑄) be the space of continuous functions
on 𝑄, and𝑊𝑟

𝑝 (𝑄) the Sobolev space, see [1]. Then𝑊𝑟
𝑝 (𝑄) is embedded into 𝐶 (𝑄)

iff
(𝑝 = 1 and 𝑟/𝑑 ≥ 1) or (1 < 𝑝 < ∞ and 𝑟/𝑑 > 1/𝑝). (41)

Let 𝐵𝑊 𝑟
𝑝 (𝑄) be the unit ball of 𝑊𝑟

𝑝 (𝑄), 𝐵𝑊 𝑟
𝑝 (𝑄) ∩ 𝐶 (𝑄) the set of those elements

of the unit ball which are continuous (more precisely, of equivalence classes, which
contain a continuous representative), and define

𝐹1 =

{
𝐵𝑊 𝑟

𝑝 (𝑄) if the embedding condition (41) holds
𝐵𝑊 𝑟

𝑝 (𝑄) ∩ 𝐶 (𝑄) otherwise.

Moreover, let 𝐼1 : 𝑊𝑟
𝑝 (𝑄) → R be the integration operator

𝐼1 𝑓 =

∫
𝑄

𝑓 (𝑥)𝑑𝑥.
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and let Λ1 = {𝛿𝑥 : 𝑥 ∈ 𝑄} be the set of point evaluations, where 𝛿𝑥 ( 𝑓 ) = 𝑓 (𝑥). Put
into the general framework of (1), we consider the problem P1 = (𝐹1,R, 𝐼1,R,Λ1).
Set 𝑝 = min(𝑝, 2). Then the following is known (for (42–44) below see [9] and
references therein). There are constants 𝑐1−6 > 0 such that for all 𝑛 ∈ N0

𝑐1𝑛
−𝑟/𝑑−1+1/ �̄� ≤ 𝑒ran𝑛 (P1) ≤ 𝑐2𝑛−𝑟/𝑑−1+1/ �̄� , (42)

moreover, if the embedding condition holds, then

𝑐3𝑛
−𝑟/𝑑 ≤ 𝑒det𝑛 (P1) ≤ 𝑐4𝑛−𝑟/𝑑 , (43)

while if the embedding condition does not hold, then

𝑐5 ≤ 𝑒det𝑛 (P1) ≤ 𝑐6. (44)

Theorem 1 immediately gives (compare this with the rate in the unrestricted
setting (42))

Corollary 1 Assume that the embedding condition (41) does not hold and let R be
any finite access restriction, see (7). Then there is a constant 𝑐 > 0 such that for all
𝑛, 𝑘 ∈ N

𝑒ran𝑛,𝑘 (P1,R) ≥ 𝑐.

It was shown in [11], that if the embedding condition holds, then (2 + 𝑑) log2 𝑛
random bits suffice to reach the rate of the unrestricted randomized setting, thus, if
R is a bit restriction (see (8)–(9)), then there are constants 𝑐1, 𝑐2 > 0 such that for
all 𝑛 ∈ N

𝑐1𝑛
−𝑟/𝑑−1+1/ �̄� ≤ 𝑒ran𝑛 (P1) ≤ 𝑒ran𝑛, (2+𝑑) log2 𝑛 (P1,R) ≤ 𝑐2𝑛

−𝑟/𝑑−1+1/ �̄� . (45)

The following consequence of Theorem 1 shows that the number of random bits used
in the (non-adaptive) algorithm from [11] giving (45) is optimal up to a constant
factor, also for adaptive algorithms.

Corollary 2 Assume that the embedding condition holds and let R be any finite
access restriction. Then for each 𝜎 with 0 < 𝜎 ≤ 1− 1/𝑝 and each 𝑐0 > 0 there are
constants 𝑐1 > 0, 𝑐2 ∈ R such that for all 𝑛, 𝑘 ∈ N

𝑒ran𝑛,𝑘 (P1,R) ≤ 𝑐0𝑛
−𝑟/𝑑−𝜎 .

implies
𝑘 ≥ 𝑐1𝜎 log2 𝑛 + 𝑐2.

Proof Let R =
(
(Ω,Σ, P), 𝐾 ′,Λ′) . By Theorem 1 and (43),

𝑐0𝑛
−𝑟/𝑑−𝜎 ≥ 𝑒ran𝑛,𝑘 (P1,R) ≥ 3

−1𝑒det3𝑛 |𝐾 ′ |3𝑘 (P1) ≥ 3
−1𝑐3 (𝑛|𝐾 ′ |3𝑘 )−𝑟/𝑑 ,

implying
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log2 𝑐0 − 𝜎 log2 𝑛 ≥ log2 (𝑐3/3) −
3𝑘𝑟
𝑑
log2 |𝐾 ′ |,

thus,

𝑘 ≥ 𝑑

3𝑟 log2 |𝐾 ′ | (𝜎 log2 𝑛 − log2 𝑐0 + log2 (𝑐3/3)). �

4.2 Integration of Lipschitz functions over the Wiener space

Let ` be the Wiener measure on 𝐶 ( [0, 1]),

𝐹2 = { 𝑓 : 𝐶 ( [0, 1]) → R, | 𝑓 (𝑥) − 𝑓 (𝑦) | ≤ ‖𝑥 − 𝑦‖𝐶 ( [0,1]) (𝑥, 𝑦 ∈ 𝐶 ( [0, 1]))},

𝐺 = R, let 𝐼2 : 𝐹 → R be the integration operator given by

𝐼2 𝑓 =

∫
𝐶 ( [0,1])

𝑓 (𝑥)𝑑`(𝑥),

and Λ2 = {𝛿𝑥 : 𝑥 ∈ 𝐶 ( [0, 1])}, so we consider the problem P2 = (𝐹2,R, 𝐼2,R,Λ2).
There exist constants 𝑐1−4 > 0 such that

𝑐1𝑛
−1/2 (log2 𝑛)−3/2 ≤ 𝑒ran𝑛 (P2) ≤ 𝑐2𝑛−1/2 (log2 𝑛)−1/2 (46)

and
𝑐3 (log2 𝑛)−1/2 ≤ 𝑒det𝑛 (P2) ≤ 𝑐4 (log2 𝑛)−1/2 (47)

for every 𝑛 ≥ 2, see [2], Theorem 1 and Proposition 3 for (47) and Theorems 11 and
12 for (46). Moreover, it is shown in [5], Theorem 8 and Remark 9, that if R is a bit
restriction, then there exist a constants 𝑐1 > 0, 𝑐2 ∈ N such that for all 𝑛 ∈ N with
𝑛 ≥ 3

𝑒ran
𝑛,^ (𝑛) (P2,R) ≤ 𝑐1𝑛

−1/2 (log2 𝑛)3/2, (48)

where
^(𝑛) = 𝑐2d𝑛(log2 𝑛)−1 log2 (log2 𝑛)e . (49)

Our results imply that the number of random bits (49) used in the algorithm of [5]
giving the upper bound in (48) is optimal (up to log terms) in the following sense.

Corollary 3 Let R be a finite access restriction. For each 𝛼 ∈ R and each 𝑐0 > 0
there are constants 𝑐1 > 0 and 𝑐2 ∈ R such that for all 𝑛, 𝑘 ∈ N with 𝑛 ≥ 2

𝑒ran𝑛,𝑘 (P2,R) ≤ 𝑐0𝑛
−1/2 (log2 𝑛)𝛼 .

implies
𝑘 ≥ 𝑐1𝑛(log2 𝑛)−2𝛼 + 𝑐2. (50)
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Proof Let R =
(
(Ω,Σ, P), 𝐾 ′,Λ′) . We use Theorem 1 again. From (47) we obtain

𝑐0𝑛
−1/2 (log2 𝑛)𝛼 ≥ 𝑒ran𝑛,𝑘 (P2,R) ≥ 3

−1𝑒det3𝑛 |𝐾 ′ |3𝑘 (P2) ≥ 3
−1𝑐3 log2 (3𝑛|𝐾 ′ |3𝑘 )−1/2,

thus

log2 (3𝑛) + 3𝑘 log2 |𝐾 ′ | ≥
𝑐23

9𝑐20
𝑛(log2 𝑛)−2𝛼,

which implies

𝑘 ≥ (3 log2 |𝐾 ′ |)−1
(
𝑐23

9𝑐20
𝑛(log2 𝑛)−2𝛼 − log2 (3𝑛)

)
. (51)

Choosing 𝑛0 ∈ N in such a way that for 𝑛 ≥ 𝑛0

𝑐23

18𝑐20
𝑛(log2 𝑛)−2𝛼 ≥ log2 (3𝑛)

leads to

𝑘 ≥ (3 log2 |𝐾 ′ |)−1
(
𝑐23

18𝑐20
𝑛(log2 𝑛)−2𝛼 − log2 (3𝑛0)

)
. �
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