Lower bounds for the number of random bits in Monte Carlo algorithms

Stefan Heinrich

Abstract

We continue the study of restricted Monte Carlo algorithms in a general setting. Here we show a lower bound for minimal errors in the setting with finite restriction in terms of deterministic minimal errors. This generalizes a result of [11] to the adaptive setting. As a consequence, the lower bounds on the number of random bits from [11] also hold in this setting. We also derive a lower bound on the number of needed bits for integration of Lipschitz functions over the Wiener space, complementing a result of [5].

1 Introduction

Restricted Monte Carlo algorithms were considered in [12, 13, 16, 11, 14, 3, 17, $4,5,6]$. Restriction usually means that the algorithm has access only to random bits or to random variables with finite range. Most of these papers on restricted randomized algorithms consider the non-adaptive case. Only [5] includes adaptivity, but considers a class of algorithms where each information call is followed by one random bit call.

A general definition restricted Monte Carlo algorithms was given in [10]. It extends the previous notions in two ways: Firstly, it includes full adaptivity, and secondly, it includes models in which the algorithms have access to an arbitrary, but fixed set of random variables, for example, uniform distributions on [0, 1]. In [10] the relation of restricted to unrestricted randomized algorithms was studied. In particular, it was shown that for each such restricted setting there is a computational problem that can be solved in the unrestricted randomized setting but not under the restriction.

[^0]The aim of the present paper is to continue the study of the restricted setting. The main result is a lower bound for minimal errors in the setting with a finite restriction in terms of deterministic minimal errors. This generalizes a corresponding result from [11], see Proposition 1 there, to the adaptive setting with arbitrary finite restriction. The formal proof in this setting is technically more involved. As a consequence the lower bounds on the number of random bits from [11] also hold in this setting. Another corollary concerns integration of Lipschitz functions over the Wiener space [5]. It shows that the number of random bits used in the algorithm from [5] is optimal, up to logarithmic factors.

2 Restricted randomized algorithms in a general setting

We work in the framework of information-based complexity theory (IBC) [13, 15], using specifically the general approach from [7, 8]. We recall the notion of a restricted randomized algorithm as recently introduced in [10]. This section is kept general, for specific examples illustrating this setup we refer to the integration problem considered in [10] as well as to the problems studied in Section 4.

We consider an abstract numerical problem

$$
\begin{equation*}
\mathcal{P}=(F, G, S, K, \Lambda), \tag{1}
\end{equation*}
$$

where F and K are a non-empty sets, G is a Banach space, S a mapping from F to G, and Λ a nonempty set of mappings from F to K. The operator S is understood to be the solution operator that sends the input $f \in F$ to the exact solution $S(f)$ and Λ is the set of information functionals about the input $f \in F$ that can be exploited by an algorithm.

A probability space with access restriction is a tuple

$$
\begin{equation*}
\mathcal{R}=\left((\Omega, \Sigma, \mathbb{P}), K^{\prime}, \Lambda^{\prime}\right) \tag{2}
\end{equation*}
$$

with $(\Omega, \Sigma, \mathbb{P})$ a probability space, K^{\prime} a non-empty set, and Λ^{\prime} a non-empty set of mappings from Ω to K^{\prime}. Define

$$
\bar{K}=K \dot{\cup} K^{\prime}, \quad \bar{\Lambda}=\Lambda \dot{\cup} \Lambda^{\prime},
$$

where $\dot{\cup}$ is the disjoint union, and for $\lambda \in \bar{\Lambda}, f \in F, \omega \in \Omega$ we set

$$
\lambda(f, \omega)= \begin{cases}\lambda(f) \text { if } & \lambda \in \Lambda \\ \lambda(\omega) \text { if } & \lambda \in \Lambda^{\prime}\end{cases}
$$

An \mathcal{R}-restricted randomized algorithm for problem \mathcal{P} is a tuple

$$
A=\left(\left(L_{i}\right)_{i=1}^{\infty},\left(\tau_{i}\right)_{i=0}^{\infty},\left(\varphi_{i}\right)_{i=0}^{\infty}\right)
$$

such that $L_{1} \in \bar{\Lambda}, \tau_{0} \in\{0,1\}, \varphi_{0} \in G$, and for $i \in \mathbb{N}$

Lower bounds for the number of random bits in Monte Carlo algorithms

$$
L_{i+1}: \bar{K}^{i} \rightarrow \bar{\Lambda}, \quad \tau_{i}: \bar{K}^{i} \rightarrow\{0,1\}, \quad \varphi_{i}: \bar{K}^{i} \rightarrow G
$$

are any mappings. Given $f \in F$ and $\omega \in \Omega$, we define $\left(\lambda_{i}\right)_{i=1}^{\infty}$ with $\lambda_{i} \in \bar{\Lambda}$ as follows:

$$
\begin{equation*}
\lambda_{1}=L_{1}, \quad \lambda_{i}=L_{i}\left(\lambda_{1}(f, \omega), \ldots, \lambda_{i-1}(f, \omega)\right) \quad(i \geq 2) \tag{3}
\end{equation*}
$$

If $\tau_{0}=1$, we define

$$
\operatorname{card}_{\bar{\Lambda}}(A, f, \omega)=\operatorname{card}_{\Lambda}(A, f, \omega)=\operatorname{card}_{\Lambda^{\prime}}(A, f, \omega)=0
$$

If $\tau_{0}=0$, let $\operatorname{card}_{\bar{\Lambda}}(A, f, \omega)$ be the first integer $n \geq 1$ with

$$
\tau_{n}\left(\lambda_{1}(f, \omega), \ldots, \lambda_{n}(f, \omega)\right)=1
$$

if there is such an n. If $\tau_{0}=0$ and no such $n \in \mathbb{N}$ exists, $\operatorname{put}_{\operatorname{card}_{\bar{\Lambda}}}(A, f, \omega)=\infty$. Furthermore, set

$$
\begin{aligned}
\operatorname{card}_{\Lambda}(A, f, \omega) & =\left|\left\{k \leq \operatorname{card}_{\bar{\Lambda}}(A, f, \omega): \lambda_{k} \in \Lambda\right\}\right| \\
\operatorname{card}_{\Lambda^{\prime}}(A, f, \omega) & =\left|\left\{k \leq \operatorname{card}_{\bar{\Lambda}}(A, f, \omega): \lambda_{k} \in \Lambda^{\prime}\right\}\right|
\end{aligned}
$$

We have $\operatorname{card}_{\bar{\Lambda}}(A, f, \omega)=\operatorname{card}_{\Lambda}(A, f, \omega)+\operatorname{card}_{\Lambda^{\prime}}(A, f, \omega)$. The output $A(f, \omega)$ of algorithm A at input (f, ω) is defined as

$$
A(f, \omega)= \begin{cases}\varphi_{0} & \text { if } \quad \operatorname{card}_{\bar{\Lambda}}(A, f, \omega) \in\{0, \infty\} \tag{4}\\ \varphi_{n}\left(\lambda_{1}(f, \omega), \ldots, \lambda_{n}(f, \omega)\right) & \text { if } \quad 1 \leq \operatorname{card}_{\bar{\Lambda}}(A, f, \omega)=n<\infty\end{cases}
$$

Thus, a restricted randomized algorithm can access the randomness of $(\Omega, \Sigma, \mathbb{P})$ only through the functionals $\lambda(\omega)$ for $\lambda \in \Lambda^{\prime}$.

The set of all \mathcal{R}-restricted randomized algorithms for \mathcal{P} is denoted by $\mathcal{A}^{\text {ran }}(\mathcal{P}, \mathcal{R})$. Let $\mathcal{A}_{\text {meas }}^{\mathrm{ran}}(\mathcal{P}, \mathcal{R})$ be the subset of those $A \in \mathcal{A}^{\mathrm{ran}}(\mathcal{P}, \mathcal{R})$ with the following properties: For each $f \in F$ the mappings

$$
\omega \rightarrow \operatorname{card}_{\Lambda}(A, f, \omega) \in \mathbb{N}_{0} \cup\{\infty\}, \quad \omega \rightarrow \operatorname{card}_{\Lambda^{\prime}}(A, f, \omega) \in \mathbb{N}_{0} \cup\{\infty\}
$$

(and hence $\omega \rightarrow \operatorname{card}_{\bar{\Lambda}}(A, f, \omega)$) are Σ-measurable and the mapping $\omega \rightarrow A(f, \omega) \in$ G is Σ-to-Borel measurable and \mathbb{P}-almost surely separably valued, the latter meaning that there is a separable subspace $G_{f} \subset G$ such that $\mathbb{P}\left(\left\{\omega \in \Omega: A(f, \omega) \in G_{f}\right\}\right)=$ 1. The error of $A \in \mathcal{A}_{\text {meas }}^{\text {ran }}(\mathcal{P}, \mathcal{R})$ is defined as

$$
\begin{equation*}
e(\mathcal{P}, A)=\sup _{f \in F} \mathbb{E}\|S(f)-A(f, \omega)\|_{G} \tag{5}
\end{equation*}
$$

Given $n, k \in \mathbb{N}_{0}$, we define $\mathcal{A}_{n, k}^{\mathrm{ran}}(\mathcal{P}, \mathcal{R})$ to be the set of those $A \in \mathcal{A}_{\text {meas }}^{\mathrm{ran}}(\mathcal{P}, \mathcal{R})$ satisfying for each $f \in F$

$$
\mathbb{E} \operatorname{card}_{\Lambda}(A, f, \omega) \leq n, \quad \mathbb{E} \operatorname{card}_{\Lambda^{\prime}}(A, f, \omega) \leq k
$$

The (n, k)-th minimal \mathcal{R}-restricted randomized error of S is defined as

$$
\begin{equation*}
e_{n, k}^{\mathrm{ran}}(\mathcal{P}, \mathcal{R})=\inf _{A \in \mathcal{A}_{n, k}^{\mathrm{ran}}(\mathcal{P}, \mathcal{R})} e(\mathcal{P}, A) \tag{6}
\end{equation*}
$$

Special cases are the following: An access restriction \mathcal{R} is called finite, if

$$
\begin{equation*}
\left|K^{\prime}\right|<\infty, \quad \lambda^{-1}(\{u\}) \in \Sigma \quad\left(\lambda^{\prime} \in \Lambda^{\prime}, u \in K^{\prime}\right) \tag{7}
\end{equation*}
$$

In this case any \mathcal{R}-restricted randomized algorithm satisfies the following. For fixed $i \in \mathbb{N}_{0}$ and $f \in F$ the functions (see (3))

$$
\omega \rightarrow L_{i}\left(\lambda_{1}(f, \omega), \ldots, \lambda_{i-1}(f, \omega)\right) \in \bar{\Lambda}, \quad \omega \rightarrow \lambda_{i}(f, \omega) \in \bar{K}
$$

take finitely many values and are Σ-to- $\Sigma_{0}(\bar{\Lambda})$-measurable (respectively Σ-to- $\Sigma_{0}(\bar{K})$ measurable), where $\Sigma_{0}(M)$ denotes the σ-algebra generated by the finite subsets of a set M. This is readily checked by induction. It follows that the mapping

$$
\omega \rightarrow \tau_{i}\left(\lambda_{1}(f, \omega), \ldots, \lambda_{i}(f, \omega)\right) \in\{0,1\}
$$

is measurable and

$$
\omega \rightarrow \varphi_{i}\left(\lambda_{1}(f, \omega), \ldots, \lambda_{i}(f, \omega)\right) \in G
$$

takes only finitely many values and is Σ-to-Borel-measurable. Consequently, for each $f \in F$ the functions $\operatorname{card}(A, f, \omega)$ and $\operatorname{card}^{\prime}(A, f, \omega)$ are Σ-measurable, $A(f, \omega)$ takes only countably many values and is Σ-to-Borel-measurable, hence $A \in \mathcal{A}_{\text {meas }}^{\text {ran }}(\mathcal{P}, \mathcal{R})$.

An access restriction is called bit restriction, if

$$
\begin{equation*}
\left|K^{\prime}\right|=2, \quad \Lambda^{\prime}=\left\{\xi_{j}: j \in \mathbb{N}\right\} \tag{8}
\end{equation*}
$$

with $\xi_{j}: \Omega \rightarrow K^{\prime}=\left\{u_{0}, u_{1}\right\}$ an independent sequence of random variables such that

$$
\begin{equation*}
P\left(\left\{\xi_{j}=u_{0}\right\}\right)=P\left(\left\{\xi_{j}=u_{1}\right\}\right)=1 / 2, \quad(j \in \mathbb{N}) \tag{9}
\end{equation*}
$$

The corresponding restricted randomized algorithms are called bit Monte Carlo algorithms. A non-adaptive version of these was considered in [11, 14, 3, 17].

Most frequently used is the case of uniform distributions on [0, 1]. This means $K^{\prime}=[0,1]$ and $\Lambda^{\prime}=\left\{\eta_{j}: j \in \mathbb{N}\right\}$, with $\left(\eta_{j}\right)$ being independent uniformly distributed on $[0,1]$ random variables over $(\Omega, \Sigma, \mathbb{P})$.

We also use the notion of a deterministic and of an (unrestricted) randomized algorithm and the corresponding notions of minimal errors. For this we refer to [7, 8], as well as to Section 2 of [10]. Let us however mention that the definition of a deterministic algorithm follows a similar scheme as the one given above. More than that, we can give an equivalent definition of a deterministic algorithm, viewing it as a special case of a randomized algorithm with an arbitrary restriction \mathcal{R}. Namely, a deterministic algorithm is an \mathcal{R}-restricted randomized algorithm A with

$$
L_{1} \in \Lambda, \quad L_{i+1}\left(K^{i}\right) \subseteq \Lambda \quad(i \in \mathbb{N})
$$

Consequently, for each $f \in F$ and $\omega, \omega_{1} \in \Omega$ we have $\operatorname{card}_{\Lambda^{\prime}}(A, f, \omega)=0$ and

$$
\begin{aligned}
A(f) & :=A(f, \omega)=A\left(f, \omega_{1}\right) \\
\operatorname{card}(A, f) & :=\operatorname{card}_{\bar{\Lambda}}(A, f, \omega)=\operatorname{card}_{\Lambda}(A, f, \omega)=\operatorname{card}_{\Lambda}\left(A, f, \omega_{1}\right)
\end{aligned}
$$

Thus, such an algorithm ignores \mathcal{R} completely. For a deterministic algorithm A relation (5) turns into

$$
\begin{equation*}
e(\mathcal{P}, A)=\sup _{f \in F}\|S(f)-A(f)\|_{G} \tag{10}
\end{equation*}
$$

A deterministic algorithm is in $\mathcal{A}_{n, k}^{\mathrm{ran}}(\mathcal{P}, \mathcal{R})$ iff $\sup _{f \in F} \operatorname{card}(A, f) \leq n$. Taking the infimum in (6) over all such A gives the n-th minimal error in the deterministic setting $e_{n}^{\operatorname{det}}(\mathcal{P})$. Clearly, $e(\mathcal{P}, A)$ and $e_{n}^{\operatorname{det}}(\mathcal{P})$ do not depend on \mathcal{R}. It follows that for each restriction \mathcal{R} and $n, k \in \mathbb{N}_{0}$

$$
e_{n, k}^{\mathrm{ran}}(\mathcal{P}, \mathcal{R}) \leq e_{n}^{\mathrm{det}}(\mathcal{P})
$$

A restricted randomized algorithm is a special case of an (unrestricted) randomized algorithm. Being intuitively clear, this was formally checked in [10], Proposition 2.1 and Corollary 2.2. Moreover, it was shown there that for each restriction \mathcal{R} and $n, k \in \mathbb{N}_{0}$

$$
e_{n}^{\mathrm{ran}}(\mathcal{P}) \leq e_{n, k}^{\mathrm{ran}}(\mathcal{P}, \mathcal{R})
$$

where $e_{n}^{\mathrm{ran}}(\mathcal{P})$ denotes the n-th minimal error in the randomized setting,

3 Deterministic vs. Restricted Randomized Algorithms

In this section we derive a relation between minimal restricted randomized errors and minimal deterministic errors for general problems. Variants of the following result have been obtained for non-adaptive random bit algorithms in [11, Prop. 1], and for adaptive algorithms that ask for random bits and function values in alternating order in [5]. Obviously, the latter does not permit to analyze a trade-off between the number of random bits and the number of function values to be used in a computation.

Theorem 1 For all problems $\mathcal{P}=(F, G, S, K, \Lambda)$ and probability spaces with finite access restriction $\mathcal{R}=\left((\Omega, \Sigma, \mathbb{P}), K^{\prime}, \Lambda^{\prime}\right)$, see (7), and for all $n, k \in \mathbb{N}_{0}$ we have

$$
e_{n, k}^{\mathrm{ran}}(\mathcal{P}, \mathcal{R}) \geq \frac{1}{3} e_{3 n\left|K^{\prime}\right|^{k}}^{\mathrm{det}}(\mathcal{P})
$$

Without loss of generality in the sequel we only consider access restrictions with the property $K \cap K^{\prime}=\emptyset$, thus $\bar{K}=K \cup K^{\prime}, \bar{\Lambda}=\Lambda \cup \Lambda^{\prime}$.

Lemma 1 Let $n, k \in \mathbb{N}_{0}$, let A be a randomized algorithm for \mathcal{P} with access restriction $\mathcal{R}=\left((\Omega, \Sigma, \mathbb{P}), K^{\prime}, \Lambda^{\prime}\right)$. For each $f \in F$ let

$$
\begin{equation*}
B_{f}=\left\{\omega \in \Omega: \operatorname{card}(A, f, \omega) \leq n, \operatorname{card}^{\prime}(A, f, \omega) \leq k\right\} \tag{11}
\end{equation*}
$$

Then there is an \mathcal{R}-restricted randomized algorithm \tilde{A} for $\tilde{\mathcal{P}}=(F, \tilde{G}, \tilde{S}, \Lambda, K)$, where $\tilde{G}=G \oplus \mathbb{R}$ and $\tilde{S}=(S(f), 0)$, satisfying for all $f \in F$ and $\omega \in \Omega$

$$
\begin{align*}
\operatorname{card}(\tilde{A}, f, \omega) & \leq n \tag{12}\\
\operatorname{card}^{\prime}(\tilde{A}, f, \omega) & \leq k \tag{13}\\
\tilde{A}(f, \omega) & =\left(A(f, \omega) \cdot 1_{B_{f}}(\omega), 1_{B_{f}}(\omega)\right) \tag{14}
\end{align*}
$$

Proof Let $A=\left(\left(L_{i}\right)_{i=1}^{\infty},\left(\tau_{i}\right)_{i=0}^{\infty},\left(\varphi_{i}\right)_{i=0}^{\infty}\right)$. For $i \in \mathbb{N}_{0}$ and $a=\left(a_{1}, \ldots, a_{i}\right) \in \bar{K}^{i}$ let

$$
\begin{aligned}
d_{i+1}(a) & =\left|\left\{L_{1}, L_{2}\left(a_{1}\right), \ldots, L_{i+1}\left(a_{1}, \ldots, a_{i}\right)\right\} \cap \Lambda\right| \\
d_{i+1}^{\prime}(a) & =\left|\left\{L_{1}, L_{2}\left(a_{1}\right), \ldots, L_{i+1}\left(a_{1}, \ldots, a_{i}\right)\right\} \cap \Lambda^{\prime}\right| \\
\zeta_{i}(a) & = \begin{cases}1 \text { if }\left(d_{i+1}(a)>n\right) \vee\left(d_{i+1}^{\prime}(a)>k\right) \\
0 & \text { otherwise } .\end{cases}
\end{aligned}
$$

Now we define $\tilde{A}=\left(\left(L_{i}\right)_{i=1}^{\infty},\left(\tilde{\tau}_{i}\right)_{i=0}^{\infty},\left(\tilde{\varphi}_{i}\right)_{i=0}^{\infty}\right)$ by setting for $i \in \mathbb{N}_{0}$ and $a \in \bar{K}^{i}$

$$
\begin{aligned}
\tilde{\tau}_{i}(a) & =\max \left(\tau_{i}(a), \zeta_{i}(a)\right) \\
\tilde{\varphi}_{i}(a) & =\left\{\begin{array}{lll}
\left(\varphi_{i}(a), 1\right) & \text { if } & \zeta_{i}(a) \leq \tau_{i}(a) \\
(0,0) & \text { if } & \zeta_{i}(a)>\tau_{i}(a)
\end{array}\right.
\end{aligned}
$$

To show (12)-(14) we fix $f \in F, \omega \in \Omega$ and define

$$
a_{1}=L_{1}(f, \omega), \quad a_{i}=\left(L_{i}\left(a_{1}, \ldots, a_{i-1}\right)\right)(f, \omega) \quad(i \geq 2)
$$

Let $m=\overline{\operatorname{card}}(A, f, \omega)$ and let q be the smallest number $q \in \mathbb{N}_{0}$ with $\zeta_{q}\left(a_{1}, \ldots, a_{q}\right)=$ 1. First assume that $\omega \in B_{f}$. Then for all $i<m$

$$
\left(d_{i+1}\left(a_{1}, \ldots, a_{i}\right) \leq n\right) \wedge\left(d_{i+1}^{\prime}\left(a_{1}, \ldots, a_{i}\right) \leq k\right)
$$

thus $\zeta_{i}\left(a_{1}, \ldots, a_{i}\right)=0$ and therefore $\tilde{\tau}_{i}\left(a_{1}, \ldots, a_{i}\right)=0$. Furthermore,

$$
\zeta_{i}\left(a_{1}, \ldots, a_{m}\right) \leq \tau_{m}\left(a_{1}, \ldots, a_{m}\right)=1
$$

which means $\overline{\operatorname{card}}(\tilde{A}, f, \omega)=m$,

$$
\begin{aligned}
\operatorname{card}(\tilde{A}, f, \omega) & =d_{m}\left(a_{1}, \ldots, a_{m-1}\right) \leq n \\
\operatorname{card}^{\prime}(\tilde{A}, f, \omega) & =d_{m}^{\prime}\left(a_{1}, \ldots, a_{m-1}\right) \leq k \\
\tilde{A}(f, \omega) & =\left(\varphi_{m}\left(a_{1}, \ldots, a_{m}\right), 1\right)=(A(f, \omega), 1) .
\end{aligned}
$$

Now let $\omega \in \Omega \backslash B_{f}$, hence

$$
\begin{aligned}
\tau_{0}=\tau_{1}\left(a_{1}\right) & =\cdots=\tau_{q}\left(a_{1}, \ldots, a_{q}\right)=0 \\
\left(d_{q+1}\left(a_{1}, \ldots, a_{q}\right)>n\right) & \vee\left(d_{q+1}^{\prime}\left(a_{1}, \ldots, a_{q}\right)>k\right),
\end{aligned}
$$

thus $\tilde{\tau}_{q}\left(a_{1}, \ldots, a_{q}\right)=1$. Consequently,

$$
\begin{aligned}
\operatorname{card}(\tilde{A}, f, \omega) & \leq d_{q}\left(a_{1}, \ldots, a_{q-1}\right) \leq n \\
\operatorname{card}^{\prime}(\tilde{A}, f, \omega) & \leq d_{q}^{\prime}\left(a_{1}, \ldots, a_{q-1}\right) \leq k \\
\tilde{A}(f, \omega) & =(0,0) .
\end{aligned}
$$

The key ingredient of the proof of Theorem 1 is the following
Lemma 2 Let $n, k \in \mathbb{N}_{0}$ and let A be a randomized algorithm for \mathcal{P} with finite access restriction $\mathcal{R}=\left((\Omega, \Sigma, \mathbb{P}), K^{\prime}, \Lambda^{\prime}\right)$ such that

$$
\begin{equation*}
\operatorname{card}(A, f, \omega) \leq n, \quad \operatorname{card}^{\prime}(A, f, \omega) \leq k \tag{15}
\end{equation*}
$$

for all $f \in F$ and $\omega \in \Omega$. Then there exists a deterministic algorithm A^{*} for \mathcal{P} with

$$
\begin{equation*}
A^{*}(f)=\mathbb{E}(A(f, \cdot)), \quad \operatorname{card}\left(A^{*}, f\right) \leq n\left|K^{\prime}\right|^{k} \quad(f \in F) . \tag{16}
\end{equation*}
$$

Proof Let $\mathcal{P}=(F, G, S, K, \Lambda), A=\left(\left(L_{i}\right)_{i=1}^{\infty},\left(\tau_{i}\right)_{i=0}^{\infty},\left(\varphi_{i}\right)_{i=0}^{\infty}\right)$. We argue by induction over $m=n+k$. If $m=0$, then $\tau_{0}=1$, hence $\overline{\operatorname{card}}(A, f, \omega)=0$, thus $A(f, \omega)=\varphi_{0}$ for all $f \in F$ and $\omega \in \Omega$, and the result follows.

Now let $m \geq 1$. We can assume that $\tau_{0}=0$, otherwise A satisfies (15) with $n=k=0$ and we are back to the case $m=0$. Let $\tilde{K} \subset \bar{K}$ be defined by

$$
\tilde{K}= \begin{cases}\left\{u \in K: L_{1}^{-1}(\{u\}) \neq \emptyset\right\} & \text { if } \\ L_{1} \in \Lambda \\ \left\{u \in K^{\prime}: \mathbb{P}\left(L_{1}^{-1}(\{u\})\right) \neq 0\right\} & \text { if } \\ L_{1} \in \Lambda^{\prime} .\end{cases}
$$

For every $u \in \tilde{K}$ we define a problem $\mathcal{P}_{u}=\left(F_{u}, G, S_{u}, K, \Lambda_{u}\right)$ and a probability space with access restriction $\mathcal{R}_{u}=\left(\left(\Omega_{u}, \Sigma_{u}, \mathbb{P}_{u}\right), K^{\prime}, \Lambda_{u}^{\prime}\right)$ as follows. If $L_{1} \in \Lambda$, we set $\mathcal{R}_{u}=\mathcal{R}$ and

$$
F_{u}=\left\{f \in F: L_{1}(f)=u\right\}, \quad S_{u}=\left.S\right|_{F_{u}}, \quad \Lambda_{u}=\left\{\left.\lambda\right|_{F_{u}}: \lambda \in \Lambda\right\} .
$$

If $L_{1} \in \Lambda^{\prime}$, we put $\mathcal{P}_{u}=\mathcal{P}$ and

$$
\begin{aligned}
\Omega_{u} & =\left\{\omega \in \Omega: L_{1}(\omega)=u\right\}, \quad \Sigma_{u}=\left\{B \cap \Omega_{u}: B \in \Sigma\right\} \\
\mathbb{P}_{u}(C) & =\mathbb{P}\left(\Omega_{u}\right)^{-1} \mathbb{P}(C) \quad\left(C \in \Sigma_{u}\right), \quad \Lambda_{u}^{\prime}=\left\{\left.\lambda^{\prime}\right|_{\Omega_{u}}: \lambda \in \Lambda^{\prime}\right\}
\end{aligned}
$$

Let $\varrho_{u}: \Lambda \cup \Lambda^{\prime} \rightarrow \Lambda_{u} \cup \Lambda_{u}^{\prime}$ be defined as

$$
\varrho_{u}(\lambda)=\left\{\begin{array}{lll}
\left.\lambda\right|_{F_{u}} & \text { if } & \lambda \in \Lambda \\
\left.\lambda\right|_{\Omega_{u}} & \text { if } & \lambda \in \Lambda^{\prime}
\end{array}\right.
$$

and let $\sigma_{u}: \Lambda_{u} \cup \Lambda_{u}^{\prime} \rightarrow \Lambda \cup \Lambda^{\prime}$ be any mapping satisfying

$$
\begin{equation*}
\varrho_{u} \circ \sigma_{u}=\operatorname{id}_{\Lambda_{u} \cup \Lambda_{u}^{\prime}} \tag{17}
\end{equation*}
$$

Furthermore, we define a random algorithm $A_{u}=\left(\left(L_{i, u}\right)_{i=1}^{\infty},\left(\tau_{i, u}\right)_{i=0}^{\infty},\left(\varphi_{i, u}\right)_{i=0}^{\infty}\right)$ for \mathcal{P}_{u} with access restriction \mathcal{R}_{u} by setting for $i \geq 0, z_{1}, \ldots, z_{i} \in \bar{K}$

$$
\begin{align*}
L_{i+1, u}\left(z_{1}, \ldots, z_{i}\right) & =\left(\varrho_{u} \circ L_{i+2}\right)\left(u, z_{1}, \ldots, z_{i}\right) \tag{18}\\
\tau_{i, u}\left(z_{1}, \ldots, z_{i}\right) & =\tau_{i+1}\left(u, z_{1}, \ldots, z_{i}\right) \tag{19}\\
\varphi_{i, u}\left(z_{1}, \ldots, z_{i}\right) & =\varphi_{i+1}\left(u, z_{1}, \ldots, z_{i}\right) \tag{20}
\end{align*}
$$

(in this and similar situations below the case $i=0$ with variables z_{1}, \ldots, z_{i} is understood in the obvious way: no dependence on z_{1}, \ldots, z_{i}).

Next we establish the relation of the algorithms A_{u} to A. Fix $f \in F_{u}, \omega \in \Omega_{u}$, and let $\left(a_{i}\right)_{i=1}^{\infty} \subseteq \bar{K}$ be given by

$$
\begin{align*}
a_{1} & =L_{1}(f, \omega)=u \tag{21}\\
a_{i} & =\left(L_{i}\left(a_{1}, \ldots, a_{i-1}\right)\right)(f, \omega) \quad(i \geq 2) \tag{22}
\end{align*}
$$

and similarly $\left(a_{i, u}\right)_{i=1}^{\infty} \subseteq \bar{K}$ by

$$
\begin{equation*}
a_{i, u}=\left(L_{i, u}\left(a_{1, u}, \ldots, a_{i-1, u}\right)\right)(f, \omega) \tag{23}
\end{equation*}
$$

We show by induction that

$$
\begin{equation*}
a_{i, u}=a_{i+1} \quad(i \in \mathbb{N}) \tag{24}
\end{equation*}
$$

Let $i=1$. Then (23), (18), (21), and (22) imply

$$
a_{1, u}=L_{1, u}(f, \omega)=\left(L_{2}(u)\right)(f, \omega)=\left(L_{2}\left(a_{1}\right)\right)(f, \omega)=a_{2}
$$

For the induction step we let $j \in \mathbb{N}$ and suppose that (24) holds for all $i \leq j$. Then (23), (18), (24), and (22) yield

$$
\begin{aligned}
a_{j+1, u} & =\left(L_{j+1, u}\left(a_{1, u}, \ldots, a_{j, u}\right)\right)(f, \omega)=\left(L_{j+2}\left(u, a_{1, u}, \ldots, a_{j, u}\right)\right)(f, \omega) \\
& =\left(L_{j+2}\left(a_{1}, a_{2}, \ldots, a_{j+1}\right)\right)(f, \omega)=a_{j+2}
\end{aligned}
$$

This proves (24). As a consequence of this relation and of (18), (19), and (20) we obtain for all $i \in \mathbb{N}_{0}$

$$
\begin{aligned}
L_{i+1, u}\left(a_{1, u}, \ldots, a_{i, u}\right) & =\left(\varrho_{u} \circ L_{i+2}\right)\left(u, a_{1, u}, \ldots, a_{i, u}\right)=\left(\varrho_{u} \circ L_{i+2}\right)\left(a_{1}, \ldots, a_{i+1}\right) \\
\tau_{i, u}\left(a_{1, u}, \ldots, a_{i, u}\right) & =\tau_{i+1}\left(u, a_{1, u}, \ldots, a_{i, u}\right)=\tau_{i+1}\left(a_{1}, \ldots, a_{i+1}\right) \\
\varphi_{i, u}\left(a_{1, u}, \ldots, a_{i, u}\right) & =\varphi_{i+1}\left(u, a_{1, u}, \ldots, a_{i, u}\right)=\varphi_{i+1}\left(a_{1}, \ldots, a_{i+1}\right)
\end{aligned}
$$

Hence, for all $f \in F_{u}$ and $\omega \in \Omega_{u}$

$$
\begin{align*}
\overline{\operatorname{card}}\left(A_{u}, f, \omega\right) & =\overline{\operatorname{card}}(A, f, \omega)-1 \\
A_{u}(f, \omega) & =A(f, \omega) . \tag{25}
\end{align*}
$$

Furthermore, if $L_{1} \in \Lambda$, then

$$
\begin{aligned}
\operatorname{card}\left(A_{u}, f, \omega\right) & =\operatorname{card}(A, f, \omega)-1 \leq n-1 \\
\operatorname{card}^{\prime}\left(A_{u}, f, \omega\right) & =\operatorname{card}^{\prime}(A, f, \omega) \leq k
\end{aligned}
$$

and if $L_{1} \in \Lambda^{\prime}$,

$$
\begin{aligned}
\operatorname{card}\left(A_{u}, f, \omega\right) & =\operatorname{card}(A, f, \omega) \leq n \\
\operatorname{card}^{\prime}\left(A_{u}, f, \omega\right) & =\operatorname{card}^{\prime}(A, f, \omega)-1 \leq k-1
\end{aligned}
$$

Now we apply the induction assumption and obtain a deterministic algorithm

$$
A_{u}^{*}=\left(\left(L_{i, u}^{*}\right)_{i=1}^{\infty},\left(\tau_{i, u}^{*}\right)_{i=0}^{\infty},\left(\varphi_{i, u}^{*}\right)_{i=0}^{\infty}\right)
$$

for \mathcal{P}_{u} with

$$
\begin{equation*}
A_{u}^{*}(f)=\mathbb{E}_{\mathbb{P}_{u}}\left(A_{u}(f, \cdot)\right) \tag{26}
\end{equation*}
$$

and

$$
\operatorname{card}\left(A_{u}^{*}, f\right) \leq\left\{\begin{array}{lll}
(n-1)\left|K^{\prime}\right|^{k} & \text { if } & L_{1} \in \Lambda \tag{27}\\
n\left|K^{\prime}\right|^{k-1} & \text { if } & L_{1} \in \Lambda^{\prime}
\end{array}\right.
$$

for every $f \in F_{u}$.
Finally we use the algorithms A_{u}^{*} to compose a deterministic algorithm

$$
A^{*}=\left(\left(L_{i}^{*}\right)_{i=1}^{\infty},\left(\tau_{i}^{*}\right)_{i=0}^{\infty},\left(\varphi_{i}^{*}\right)_{i=0}^{\infty}\right)
$$

for \mathscr{P}. This and the completion of the proof is done separately for each of the cases $L_{1} \in \Lambda$ and $L_{1} \in \Lambda^{\prime}$.

If $L_{1} \in \Lambda$, then we set

$$
L_{1}^{*}=L_{1}, \quad \tau_{0}^{*}=\tau_{0}=0, \quad \varphi_{0}^{*}=\varphi_{0},
$$

furthermore, for $i \in \mathbb{N}, z_{1} \in \tilde{K}, z_{2}, \ldots, z_{i} \in \bar{K}$ we let (with $\sigma_{z_{1}}$ defined by (17))

$$
\begin{align*}
L_{i+1}^{*}\left(z_{1}, \ldots, z_{i}\right) & =\left(\sigma_{z_{1}} \circ L_{i, z_{1}}^{*}\right)\left(z_{2}, \ldots, z_{i}\right) \tag{28}\\
\tau_{i}^{*}\left(z_{1}, \ldots, z_{i}\right) & =\tau_{i-1, z_{1}}^{*}\left(z_{2}, \ldots, z_{i}\right) \tag{29}\\
\varphi_{i}^{*}\left(z_{1}, \ldots, z_{i}\right) & =\varphi_{i-1, z_{1}}^{*}\left(z_{2}, \ldots, z_{i}\right) \tag{30}
\end{align*}
$$

For $i \geq 1, z_{1} \in \bar{K} \backslash \tilde{K}$, and $z_{2}, \ldots, z_{i} \in \bar{K}$ we define

$$
L_{i+1}^{*}\left(z_{1}, \ldots, z_{i}\right)=L_{1}, \quad \tau_{i}^{*}\left(z_{1}, \ldots, z_{i}\right)=1, \quad \varphi_{i}^{*}\left(z_{1}, \ldots, z_{i}\right)=\varphi_{0} .
$$

Let $u \in \tilde{K}$ and $f \in F_{u}$. We show that

$$
\begin{align*}
A^{*}(f) & =A_{u}^{*}(f) \tag{31}\\
\operatorname{card}\left(A^{*}, f\right) & =\operatorname{card}\left(A_{u}^{*}, f\right)+1 \tag{32}
\end{align*}
$$

Let $\left(b_{i}\right)_{i=1}^{\infty} \subseteq \bar{K}$ be given by

$$
\begin{align*}
b_{1} & =L_{1}^{*}(f)=L_{1}(f)=u \tag{33}\\
b_{i} & =\left(L_{i}^{*}\left(b_{1}, \ldots, b_{i-1}\right)\right)(f) \quad(i \geq 2) \tag{34}
\end{align*}
$$

and similarly $\left(b_{i, u}\right)_{i=1}^{\infty} \subseteq \bar{K}$ by

$$
\begin{equation*}
b_{i, u}=\left(L_{i, u}^{*}\left(b_{1, u}, \ldots, b_{i-1, u}\right)\right)(f) \tag{35}
\end{equation*}
$$

Then

$$
\begin{equation*}
b_{i+1}=b_{i, u} \quad(i \in \mathbb{N}) \tag{36}
\end{equation*}
$$

Indeed, for $i=1$ we conclude from (34), (33), (28), and (35)

$$
b_{2}=\left(L_{2}^{*}\left(b_{1}\right)\right)(f)=\left(L_{2}^{*}(u)\right)(f)=L_{1, u}^{*}(f)=b_{1, u}
$$

Now let $j \in \mathbb{N}$ and assume (36) holds for all $i \leq j$. By (34), (33), (28), and (35)

$$
\begin{aligned}
b_{j+2} & =\left(L_{j+2}^{*}\left(b_{1}, b_{2}, \ldots, b_{j+1}\right)\right)(f)=\left(L_{j+2}^{*}\left(u, b_{1, u}, \ldots, b_{j, u}\right)\right)(f) \\
& =\left(L_{j+1, u}^{*}\left(b_{1, u}, \ldots, b_{j, u}\right)\right)(f)=b_{j+1, u}
\end{aligned}
$$

This proves (36). It follows from (36), (33), (29), and (30) that for all $i \in \mathbb{N}_{0}$

$$
\begin{aligned}
\tau_{i+1}^{*}\left(b_{1}, \ldots, b_{i+1}\right) & =\tau_{i+1}^{*}\left(u, b_{1, u}, \ldots, b_{i, u}\right)=\tau_{i, u}^{*}\left(b_{1, u}, \ldots, b_{i, u}\right) \\
\varphi_{i+1}^{*}\left(b_{1}, \ldots, b_{i+1}\right) & =\varphi_{i+1}^{*}\left(u, b_{1, u}, \ldots, b_{i, u}\right)=\varphi_{i, u}^{*}\left(b_{1, u}, \ldots, b_{i, u}\right)
\end{aligned}
$$

This shows (31) and (32). From (31), (26), and (25) we conclude for $u \in \tilde{K}, f \in F_{u}$, recalling that $\mathcal{R}_{u}=\mathcal{R}$,

$$
A^{*}(f)=A_{u}^{*}(f)=\mathbb{E}_{\mathbb{P}}\left(A_{u}(f, \cdot)\right)=\mathbb{E}_{\mathbb{P}}(A(f, \cdot))
$$

Since $\cup_{u \in \tilde{K}} F_{u}=F$, the first relation of (16) follows. The second relation is a direct consequence of (32) and (27), completing the induction for the case $L_{1} \in \Lambda$.

If $L_{1} \in \Lambda^{\prime}$, then we use the algorithms $\left(A_{u}^{*}\right)_{u \in \tilde{K}}$ for $\mathcal{P}_{u}=\mathcal{P}$ and Lemma 3 of [8] to obtain a deterministic algorithm A^{*} for \mathcal{P} such that for $f \in F$

$$
\begin{align*}
A^{*}(f) & =\sum_{u \in \tilde{K}} \mathbb{P}\left(L_{1}^{-1}(\{u\}) A_{u}^{*}(f)\right. \tag{37}\\
\operatorname{card}\left(A^{*}, f\right) & =\sum_{u \in \tilde{K}} \operatorname{card}\left(A_{u}^{*}, f\right) \tag{38}
\end{align*}
$$

It follows from (37), (26), and (25) that

$$
\begin{aligned}
A^{*}(f) & =\sum_{u \in K^{\prime}: \mathbb{P}\left(L_{1}^{-1}(\{u\})\right)>0} \mathbb{P}\left(L_{1}^{-1}(\{u\}) \mathbb{E}_{\mathbb{P}_{u}} A_{u}(f, \cdot)\right. \\
& =\sum_{u \in K^{\prime}: \mathbb{P}\left(L_{1}^{-1}(\{u\})\right)>0} \int_{L_{1}^{-1}(\{u\})} A_{u}(f, \omega) d \mathbb{P}(\omega) \\
& =\sum_{u \in K^{\prime}: \mathbb{P}\left(L_{1}^{-1}(\{u\})\right)>0} \int_{L_{1}^{-1}(\{u\})} A(f, \omega) d \mathbb{P}(\omega)=\mathbb{E}_{\mathbb{P}} A_{u}(f, \cdot) .
\end{aligned}
$$

Furthermore, (27) and (38) imply $\operatorname{card}\left(A^{*}, f\right) \leq n\left|K^{\prime}\right|^{k}$.
Proof of Theorem 1 The proof is similar to the proof of [5, Lem. 11]. Let $\delta>0$ and let

$$
A=\left(\left(L_{i}\right)_{i=1}^{\infty},\left(\tau_{i}\right)_{i=0}^{\infty},\left(\varphi_{i}\right)_{i=0}^{\infty}\right) \in \mathcal{A}_{n, k}^{\mathrm{ran}}(\mathcal{P}, \mathcal{R})
$$

be a randomized algorithm for \mathcal{P} with restriction \mathcal{R} satisfying

$$
\begin{equation*}
e(A, \mathcal{P}) \leq e_{n, k}^{\mathrm{ran}}(\mathcal{P}, \mathcal{R})+\delta \tag{39}
\end{equation*}
$$

For $f \in F$ define

$$
B_{f}=\left\{\omega \in \Omega: \operatorname{card}(A, f, \omega) \leq 3 n, \operatorname{card}^{\prime}(A, f, \omega) \leq 3 k\right\} .
$$

Observe that $B_{f} \in \Sigma$ and $P\left(B_{f}\right) \geq 1 / 3$. For the conditional expectation

$$
\mathbb{E}\left(A(f, \cdot) \mid B_{f}\right)=\frac{\mathbb{E}\left(A(f, \cdot) \cdot 1_{B_{f}}\right)}{P\left(B_{f}\right)}
$$

of $A(f, \cdot)$ given B_{f} we obtain

$$
\begin{align*}
& 3 \mathbb{E}\|S(f)-A(f, \cdot)\|_{G} \\
& \geq \mathbb{E}\left(\|S(f)-A(f, \cdot)\|_{G} \mid B_{f}\right) \geq\left\|S(f)-\mathbb{E}\left(A(f, \cdot) \mid B_{f}\right)\right\|_{G} \tag{40}
\end{align*}
$$

by means of Jensen's inequality. Our goal is now to design a deterministic algorithm with input-output mapping $f \mapsto \mathbb{E}\left(A(f, \cdot) \mid B_{f}\right)$.

From Lemma 1 we conclude that there is an \mathcal{R}-restricted randomized algorithm $\tilde{A}=\left(\left(L_{i}\right)_{i=1}^{\infty},\left(\tilde{\tau}_{i}\right)_{i=0}^{\infty},\left(\tilde{\varphi}_{i}\right)_{i=0}^{\infty}\right)$ for $\tilde{\mathcal{P}}=(F, \tilde{G}, \tilde{S}, \Lambda, K)$, where $\tilde{G}=G \oplus \mathbb{R}$ and $\tilde{S}(f)=(S(f), 0)(f \in F)$, satisfying for all $f \in F$ and $\omega \in \Omega$

$$
\begin{aligned}
& \operatorname{card}(\tilde{A}, f, \omega) \leq 3 n, \quad \operatorname{card}^{\prime}(\tilde{A}, f, \omega) \leq 3 k, \\
& \tilde{A}(f, \omega)=\left(A(f, \omega) \cdot 1_{B_{f}}(\omega), 1_{B_{f}}(\omega)\right) .
\end{aligned}
$$

By Lemma 2 there is a deterministic algorithm $A^{*}=\left(\left(L_{i}^{*}\right)_{i=1}^{\infty},\left(\tau_{i}^{*}\right)_{i=0}^{\infty},\left(\varphi_{i}^{*}\right)_{i=0}^{\infty}\right)$ for $\tilde{\mathcal{P}}$ such that for all $f \in F$

$$
\operatorname{card}\left(A^{*}, f\right) \leq 3 n\left|K^{\prime}\right|^{3 k}, \quad A^{*}(f)=\left(\int_{B_{f}} A(f, \omega) d \mathbb{P}(\omega), \mathbb{P}\left(B_{f}\right)\right)
$$

It remains to modify A^{*} as follows

$$
\tilde{A}^{*}=\left(\left(L_{i}^{*}\right)_{i=1}^{\infty},\left(\tau_{i}^{*}\right)_{i=0}^{\infty},\left(\psi_{i}^{*}\right)_{i=0}^{\infty}\right)
$$

where for $i \in \mathbb{N}_{0}$ and $a \in K^{i}$

$$
\psi_{i}^{*}(a)= \begin{cases}\frac{\varphi_{i, 1}^{*}(a)}{\varphi_{i, 2}(a)} & \text { if } \quad \varphi_{i, 2}^{*}(a) \neq 0 \\ 0 & \text { if } \quad \varphi_{i, 2}^{*}(a)=0\end{cases}
$$

with $\varphi_{i}^{*}(a)=\left(\varphi_{i, 1}^{*}(a), \varphi_{i, 2}^{*}(a)\right)$ being the splitting into the G and \mathbb{R} component. Hence for each $f \in F$

$$
\begin{aligned}
\operatorname{card}\left(\tilde{A}^{*}, f\right) & \leq 3 n\left|K^{\prime}\right|^{3 k} \\
\tilde{A}^{*}(f) & =\mathbb{E}\left(A(f, \cdot) \mid B_{f}\right)
\end{aligned}
$$

and therefore we conclude, using (39) and (40),

$$
e_{3 n\left|K^{\prime}\right|^{3 k}}^{\mathrm{det}}(\mathcal{P}) \leq e\left(\tilde{A}^{*}, \tilde{\mathcal{P}}\right) \leq 3 e(A, \mathcal{P}) \leq 3\left(e_{n, k}^{\mathrm{ran}}(\mathcal{P}, \mathcal{R})+\delta\right)
$$

for each $\delta>0$.

4 Applications

4.1 Integration of functions in Sobolev spaces

Let $r, d \in \mathbb{N}, 1 \leq p<\infty, Q=[0,1]^{d}$, let $C(Q)$ be the space of continuous functions on Q, and $W_{p}^{r}(Q)$ the Sobolev space, see [1]. Then $W_{p}^{r}(Q)$ is embedded into $C(Q)$ iff

$$
\begin{equation*}
(p=1 \text { and } \quad r / d \geq 1) \quad \text { or } \quad(1<p<\infty \text { and } \quad r / d>1 / p) \tag{41}
\end{equation*}
$$

Let $B_{W_{p}^{r}(Q)}$ be the unit ball of $W_{p}^{r}(Q), B_{W_{p}^{r}(Q)} \cap C(Q)$ the set of those elements of the unit ball which are continuous (more precisely, of equivalence classes, which contain a continuous representative), and define

$$
F_{1}= \begin{cases}B_{W_{p}^{r}(Q)} & \text { if the embedding condition (41) holds } \\ B_{W_{p}^{r}(Q)} \cap C(Q) & \text { otherwise }\end{cases}
$$

Moreover, let $I_{1}: W_{p}^{r}(Q) \rightarrow \mathbb{R}$ be the integration operator

$$
I_{1} f=\int_{Q} f(x) d x
$$

and let $\Lambda_{1}=\left\{\delta_{x}: x \in Q\right\}$ be the set of point evaluations, where $\delta_{x}(f)=f(x)$. Put into the general framework of (1), we consider the problem $\mathcal{P}_{1}=\left(F_{1}, \mathbb{R}, I_{1}, \mathbb{R}, \Lambda_{1}\right)$. Set $\bar{p}=\min (p, 2)$. Then the following is known (for (42-44) below see [9] and references therein). There are constants $c_{1-6}>0$ such that for all $n \in \mathbb{N}_{0}$

$$
\begin{equation*}
c_{1} n^{-r / d-1+1 / \bar{p}} \leq e_{n}^{\mathrm{ran}}\left(\mathcal{P}_{1}\right) \leq c_{2} n^{-r / d-1+1 / \bar{p}} \tag{42}
\end{equation*}
$$

moreover, if the embedding condition holds, then

$$
\begin{equation*}
c_{3} n^{-r / d} \leq e_{n}^{\operatorname{det}}\left(\mathcal{P}_{1}\right) \leq c_{4} n^{-r / d} \tag{43}
\end{equation*}
$$

while if the embedding condition does not hold, then

$$
\begin{equation*}
c_{5} \leq e_{n}^{\operatorname{det}}\left(\mathcal{P}_{1}\right) \leq c_{6} \tag{44}
\end{equation*}
$$

Theorem 1 immediately gives (compare this with the rate in the unrestricted setting (42))

Corollary 1 Assume that the embedding condition (41) does not hold and let \mathcal{R} be any finite access restriction, see (7). Then there is a constant $c>0$ such that for all $n, k \in \mathbb{N}$

$$
e_{n, k}^{\mathrm{ran}}\left(\mathcal{P}_{1}, \mathcal{R}\right) \geq c
$$

It was shown in [11], that if the embedding condition holds, then $(2+d) \log _{2} n$ random bits suffice to reach the rate of the unrestricted randomized setting, thus, if \mathcal{R} is a bit restriction (see (8)-(9)), then there are constants $c_{1}, c_{2}>0$ such that for all $n \in \mathbb{N}$

$$
\begin{equation*}
c_{1} n^{-r / d-1+1 / \bar{p}} \leq e_{n}^{\mathrm{ran}}\left(\mathcal{P}_{1}\right) \leq e_{n,(2+d) \log _{2} n}^{\mathrm{ran}}\left(\mathcal{P}_{1}, \mathcal{R}\right) \leq c_{2} n^{-r / d-1+1 / \bar{p}} \tag{45}
\end{equation*}
$$

The following consequence of Theorem 1 shows that the number of random bits used in the (non-adaptive) algorithm from [11] giving (45) is optimal up to a constant factor, also for adaptive algorithms.

Corollary 2 Assume that the embedding condition holds and let \mathcal{R} be any finite access restriction. Then for each σ with $0<\sigma \leq 1-1 / \bar{p}$ and each $c_{0}>0$ there are constants $c_{1}>0, c_{2} \in \mathbb{R}$ such that for all $n, k \in \mathbb{N}$

$$
e_{n, k}^{\mathrm{ran}}\left(\mathcal{P}_{1}, \mathcal{R}\right) \leq c_{0} n^{-r / d-\sigma} .
$$

implies

$$
k \geq c_{1} \sigma \log _{2} n+c_{2}
$$

Proof Let $\mathcal{R}=\left((\Omega, \Sigma, \mathbb{P}), K^{\prime}, \Lambda^{\prime}\right)$. By Theorem 1 and (43),

$$
c_{0} n^{-r / d-\sigma} \geq e_{n, k}^{\mathrm{ran}}\left(\mathcal{P}_{1}, \mathcal{R}\right) \geq 3^{-1} e_{3 n\left|K^{\prime}\right|^{3 k}}^{\operatorname{det}}\left(\mathcal{P}_{1}\right) \geq 3^{-1} c_{3}\left(n\left|K^{\prime}\right|^{3 k}\right)^{-r / d},
$$

implying

$$
\log _{2} c_{0}-\sigma \log _{2} n \geq \log _{2}\left(c_{3} / 3\right)-\frac{3 k r}{d} \log _{2}\left|K^{\prime}\right|
$$

thus,

$$
k \geq \frac{d}{3 r \log _{2}\left|K^{\prime}\right|}\left(\sigma \log _{2} n-\log _{2} c_{0}+\log _{2}\left(c_{3} / 3\right)\right)
$$

4.2 Integration of Lipschitz functions over the Wiener space

Let μ be the Wiener measure on $C([0,1])$,

$$
F_{2}=\left\{f: C([0,1]) \rightarrow \mathbb{R},|f(x)-f(y)| \leq\|x-y\|_{C([0,1])} \quad(x, y \in C([0,1]))\right\},
$$

$G=\mathbb{R}$, let $I_{2}: F \rightarrow \mathbb{R}$ be the integration operator given by

$$
I_{2} f=\int_{C([0,1])} f(x) d \mu(x)
$$

and $\Lambda_{2}=\left\{\delta_{x}: x \in C([0,1])\right\}$, so we consider the problem $\mathcal{P}_{2}=\left(F_{2}, \mathbb{R}, I_{2}, \mathbb{R}, \Lambda_{2}\right)$. There exist constants $c_{1-4}>0$ such that

$$
\begin{equation*}
c_{1} n^{-1 / 2}\left(\log _{2} n\right)^{-3 / 2} \leq e_{n}^{\mathrm{ran}}\left(\mathcal{P}_{2}\right) \leq c_{2} n^{-1 / 2}\left(\log _{2} n\right)^{-1 / 2} \tag{46}
\end{equation*}
$$

and

$$
\begin{equation*}
c_{3}\left(\log _{2} n\right)^{-1 / 2} \leq e_{n}^{\operatorname{det}}\left(\mathcal{P}_{2}\right) \leq c_{4}\left(\log _{2} n\right)^{-1 / 2} \tag{47}
\end{equation*}
$$

for every $n \geq 2$, see [2], Theorem 1 and Proposition 3 for (47) and Theorems 11 and 12 for (46). Moreover, it is shown in [5], Theorem 8 and Remark 9, that if \mathcal{R} is a bit restriction, then there exist a constants $c_{1}>0, c_{2} \in \mathbb{N}$ such that for all $n \in \mathbb{N}$ with $n \geq 3$

$$
\begin{equation*}
e_{n, k(n)}^{\mathrm{ran}}\left(\mathcal{P}_{2}, \mathcal{R}\right) \leq c_{1} n^{-1 / 2}\left(\log _{2} n\right)^{3 / 2} \tag{48}
\end{equation*}
$$

where

$$
\begin{equation*}
\kappa(n)=c_{2}\left\lceil n\left(\log _{2} n\right)^{-1} \log _{2}\left(\log _{2} n\right)\right\rceil . \tag{49}
\end{equation*}
$$

Our results imply that the number of random bits (49) used in the algorithm of [5] giving the upper bound in (48) is optimal (up to log terms) in the following sense.

Corollary 3 Let \mathcal{R} be a finite access restriction. For each $\alpha \in \mathbb{R}$ and each $c_{0}>0$ there are constants $c_{1}>0$ and $c_{2} \in \mathbb{R}$ such that for all $n, k \in \mathbb{N}$ with $n \geq 2$

$$
e_{n, k}^{\mathrm{ran}}\left(\mathcal{P}_{2}, \mathcal{R}\right) \leq c_{0} n^{-1 / 2}\left(\log _{2} n\right)^{\alpha}
$$

implies

$$
\begin{equation*}
k \geq c_{1} n\left(\log _{2} n\right)^{-2 \alpha}+c_{2} \tag{50}
\end{equation*}
$$

Proof Let $\mathcal{R}=\left((\Omega, \Sigma, \mathbb{P}), K^{\prime}, \Lambda^{\prime}\right)$. We use Theorem 1 again. From (47) we obtain

$$
c_{0} n^{-1 / 2}\left(\log _{2} n\right)^{\alpha} \geq e_{n, k}^{\mathrm{ran}}\left(\mathcal{P}_{2}, \mathcal{R}\right) \geq 3^{-1} e_{3 n\left|K^{\prime}\right|^{3 k}}^{\mathrm{det}}\left(\mathcal{P}_{2}\right) \geq 3^{-1} c_{3} \log _{2}\left(3 n\left|K^{\prime}\right|^{3 k}\right)^{-1 / 2}
$$

thus

$$
\log _{2}(3 n)+3 k \log _{2}\left|K^{\prime}\right| \geq \frac{c_{3}^{2}}{9 c_{0}^{2}} n\left(\log _{2} n\right)^{-2 \alpha}
$$

which implies

$$
\begin{equation*}
k \geq\left(3 \log _{2}\left|K^{\prime}\right|\right)^{-1}\left(\frac{c_{3}^{2}}{9 c_{0}^{2}} n\left(\log _{2} n\right)^{-2 \alpha}-\log _{2}(3 n)\right) \tag{51}
\end{equation*}
$$

Choosing $n_{0} \in \mathbb{N}$ in such a way that for $n \geq n_{0}$

$$
\frac{c_{3}^{2}}{18 c_{0}^{2}} n\left(\log _{2} n\right)^{-2 \alpha} \geq \log _{2}(3 n)
$$

leads to

$$
k \geq\left(3 \log _{2}\left|K^{\prime}\right|\right)^{-1}\left(\frac{c_{3}^{2}}{18 c_{0}^{2}} n\left(\log _{2} n\right)^{-2 \alpha}-\log _{2}\left(3 n_{0}\right)\right)
$$

Acknowledgement. The author thanks Mario Hefter and Klaus Ritter for discussions on the subject of this paper.

References

1. R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975.
2. J. Creutzig, S. Dereich, Th. Müller-Gronbach, and K. Ritter, Infinite-dimensional quadrature and approximation of distributions, Found. Comput. Math. 9, No. 4 (2009), 391-429.
3. W. Gao, P. Ye, and H. Wang, Optimal error bound of restricted Monte Carlo integration on anisotropic Sobolev classes, Progr. Natur. Sci. (English Ed.) 16 (2006), 588-593.
4. M. B. Giles, M. Hefter, L. Mayer, and K. Ritter, Random bit quadrature and approximation of distributions on Hilbert spaces, Found. Comput. Math. 19 (2019), 205-238.
5. M. B. Giles, M. Hefter, L. Mayer, and K. Ritter, Random bit multilevel algorithms for stochastic differential equations, J. Complexity 54 (2019), 101395.
6. M. B. Giles, M. Hefter, L. Mayer, and K. Ritter, An Adaptive Random Bit Multilevel Algorithm for SDEs, in: Multivariate Algorithms and Information-Based Complexity, F. Hickernell, and P. Kritzer (editors), De Gruyter, Berlin/Boston, 2020, pp. 15-32.
7. S. Heinrich, Monte Carlo approximation of weakly singular integral operators, J. Complexity 22 (2006), 192-219.
8. S. Heinrich, The randomized information complexity of elliptic PDE, J. Complexity 22 (2006), 220-249.
9. S. Heinrich, Stochastic approximation and applications, In: Monte Carlo and Quasi-Monte Carlo Methods 2010 (L. Plaskota, H. Woźniakowski, eds.), Springer-Verlag, Berlin, 2012, pp. 95-131.
10. S. Heinrich, On the power of restricted Monte Carlo algorithms, 2018 MATRIX Annals, Springer, 2020, pp. 45-59.
11. S. Heinrich, E. Novak, and H. Pfeiffer. How many random bits do we need for Monte Carlo integration? In: Monte Carlo and Quasi-Monte Carlo Methods 2002 (H. Niederreiter, ed.), Springer-Verlag, Berlin, 2004, pp. 27-49.
12. E. Novak, Eingeschränkte Monte Carlo-Verfahren zur numerischen Integration, Proc. 4th Pannonian Symp. on Math. Statist., Bad Tatzmannsdorf, Austria 1983, W. Grossmann et al. eds., Reidel, 1985, pp. 269-282.
13. E. Novak, Deterministic and Stochastic Error Bounds in Numerical Analysis, Lecture Notes in Mathematics 1349, Springer-Verlag, 1988.
14. E. Novak and H. Pfeiffer, Coin tossing algorithms for integral equations and tractability, Monte Carlo Methods Appl. 10 (2004), 491-498.
15. J. F. Traub, G. W. Wasilkowski, and H. Woźniakowski, Information-Based Complexity, Academic Press, 1988.
16. J. F. Traub and H. Woźniakowski, The Monte Carlo algorithm with a pseudorandom generator, Math. Comp. 58 (1992), 323-339.
17. P. Ye and X . Hu, Optimal integration error on anisotropic classes for restricted Monte Carlo and quantum algorithms, J. Approx. Theory 150 (2008), 24-47.

[^0]: Department of Computer Science, University of Kaiserslautern, D-67653 Kaiserslautern, Germany e-mail: heinrich@informatik.uni-kl.de

