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Abstract

We study the randomized approximation of weakly singular inte-
gral operators. For a suitable class of kernels having a standard type
of singularity and being otherwise of finite smoothness, we develop a
Monte Carlo multilevel method, give convergence estimates and prove
lower bounds which show the optimality of this method and establish
the complexity. As an application we obtain optimal methods for and
the complexity of randomized solution of the Poisson equation in sim-
ple domains, when the solution is sought on subdomains of arbitrary
dimension.

1 Introduction

In a number of papers Monte Carlo methods for the computation of integrals
depending on a parameter, integral operators and the solution of integral
equations were proposed and studied, see [3, 18, 14, 15, 16, 20, 21]. The
complexity of these problems in the randomized setting was investigated in
[5, 6, 10]. There a new type of Monte Carlo methods – multilevel variance
reduction – was introduced and shown to be optimal for such problems.
These multilevel methods assumed the smoothness of the integrand (ker-
nel) in the whole domain, while typical kernels in applications often possess
(weak) singularities.

In the present paper we study this situation. We propose a multilevel
Monte Carlo method for the approximation of integral operators, which
takes care of the singularity. We analyze its convergence rate, prove lower
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bounds, determine the complexity of the problem and establish optimality
of the method.

As an application we study the following model problem: the solution
of the Poisson equation in a d-dimensional ball, with homogeneous Dirich-
let boundary conditions, and the solution being sought on a subcube of
arbitrary dimension. Optimal algorithms are derived.

Basic facts on Monte Carlo methods can be found in [2, 11, 14, 15]. For
general background on the theory of information-based complexity, within
the frame of which we carry out our investigations, we refer to [17, 19, 4].

2 Preliminaries

We shall use the following notation. Let d ∈ N (where N always means
{1, 2, . . . }, while N0 stands for N ∪ {0}). For a bounded Lebesgue measur-
able setQ ⊂ R

d of positive Lebesgue measure we let L∞(Q) denote the space
of essentially bounded real-valued Lebesgue measurable functions on Q, en-
dowed with the essential supremum norm. If Q ⊂ R

d is closed and bounded,
we let C(Q) be the space of continuous functions on Q, equipped with the
supremum norm. If, moreover, Q is the closure of its interior points, and
s ∈ N, we let Cs(Q) be the space of continuous real functions on Q which
are s-times continuously differentiable in the interior Q0 of Q, and whose
partial derivatives up to order s have continuous extensions to Q. The norm
on Cs(Q) is defined as

‖f‖Cs(Q) = max
|α|≤s

sup
x∈Q

|Dαf(x)|.

The subspace of C(Q) (respectively, of Cs(Q)) consisting of those functions
which vanish (respectively, vanish together with all derivatives up to order
s) on the boundary of Q is denoted by C0(Q) (respectively, Cs

0(Q)). For
normed spaces X and Y we let L(X,Y ) denote the space of all bounded
linear operators from X to Y , and BX = {u ∈ X : ‖u‖X ≤ 1} the unit ball.

Let us introduce the problem we study. Given two sets M,Q ⊂ Rd,
a kernel function k on M × Q and a function f ∈ L∞(Q), we seek to
approximate

(Tkf)(x) =

∫

Q
k(x, y)f(y)dy (x ∈M),

considered as an operator into L∞(M), that is, the error being measured in
the norm of L∞(M). Now let us specify the assumptions.
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Let d1, d ∈ N, d1 ≤ d, let M = [0, 1]d1 be the d1-dimensional unit
cube and let Q ⊂ R

d be bounded, Lebesgue measurable, and of positive
Lebesgue measure. In the case d1 < d we shall identify M with the subset
[0, 1]d1 × {0(d−d1)} of R

d. In this sense, let diag(M,Q) := {(x, x) : x ∈
M ∩Q}.

Next let us specify the class of kernels. The following notation will be
helpful. For τ ∈ R and x 6= y ∈ R

d define

γτ (x, y) =





|x− y|τ if τ < 0,
| ln |x− y|| + 1 if τ = 0,
1 if τ > 0.

(1)

Let s ∈ N and σ ∈ R, −d < σ < +∞. We introduce the following set
of kernels Cs,σ(M,Q). It consists of all Lebesgue measurable functions k :
M ×Q \ diag(M,Q) → R with the property that there is a constant c > 0
such that for all y ∈ Q

1. k(x, y) is s-times continuously differentiable with respect to x on
M0 \ {y}, where M0 means the interior of M , as a subset of R

d1 ,

2. for all multiindices α ∈ Nd1
0 with 0 ≤ |α| = α1 + · · · + αd1 ≤ s the

α-th partial derivative of k with respect to the x-variables, which we
denote by Dα

xk(x, y), satisfies the estimate

|Dα
xk(x, y)| ≤ c γσ−|α|(x, y) (x ∈M0 \ {y}), (2)

and

3. for all α ∈ Nd1
0 with 0 ≤ |α| ≤ s the functions Dα

xk(x, y) have contin-
uous extensions to M \ {y}.

For the sake of completeness we also want to include the case d1 = 0
into some of the results. Here we put M = {0} ⊂ Rd. The set Cs,σ(M,Q)
does not depend on s and consists of all functions k(0, y) which are Lebesgue
measurable in y and satisfy

|k(0, y)| ≤ cγσ(0, y) (y ∈ Q \ {0}) (3)

for a certain c > 0. The target space L∞(M) is then understood as replaced
by R, that is, the operator Tk acts from L∞(Q) to R.

For k ∈ Cs,σ(M,Q) let ‖k‖Cs,σ denote the smallest c > 0 satisfying (2).
It is easily checked that ‖ . ‖Cs,σ is a norm, which turns Cs,σ(M,Q) into a

3



Banach space. Examples of kernels in Cs,σ(M,Q) include the weakly singular
kernels

k(x, y) = h(x, y)|x− y|σ,
for −d < σ < +∞, σ 6∈ {0, 2, 4, . . . }, and

k(x, y) = h(x, y)|x− y|σ ln |x− y|,

for even σ ≥ 0, where h is Lebesgue measurable on M × Q, h( . , y) is in
Cs(M) for all y ∈ Q and

sup
y∈Q

‖h( . , y)‖Cs(M) <∞.

This is easily checked by differentiation. In particular, for m ∈ N, the
fundamental solution of ∆m, the m-th power of the Laplacian in R

d, has,
up to a constant factor, the form

|x− y|2m−d.

if 2m < d or d is odd, and

|x− y|2m−d ln |x− y|

if 2m ≥ d and d is even. Clearly, if k ∈ Cs,σ(M,Q), then

Tk ∈ L(L∞(Q), L∞(M)).

In fact, Tk maps L∞(Q) into C(M), but since our approximation will be
piecewise continuous, we prefer to work in L∞(M).

3 The algorithm and its analysis

Throughout this section we assume d1 ≥ 1. First we present some approx-
imation tools needed later. We are concerned with partitions, meshes and
interpolation operators on M = [0, 1]d1 exclusively. For l = 0, 1, . . . let

M =

nl⋃

i=1

Mli (4)

be the partition of M into
nl = 2d1l
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closed subcubes of sidelength 2−l and mutually disjoint interior. Let Γl

be the equidistant mesh on M with mesh-size 2−l(max(1, s − 1))−1 and
Γli = Γl ∩Mli. Let Pli : `∞(Γli) → Eli be the multivariate (tensor product)
Lagrange interpolation on Γli, where Eli is the space of multivariate poly-
nomials on Mli of degree at most s − 1 in each variable (thus, we consider
the maximum degree). It is convenient for our purposes to identify Eli with
a subspace of L∞(M) by continuing the functions as ≡ 0 outside of Mli.

For our algorithm we also need the interpolation pieces of level l + 1,
collected on Mli. Put

Êli =
∑

j: Ml+1,j⊆Mli

El+1,j ,

(the sum is meant as a sum of subspaces of L∞(M)),

Γ̂li =
⋃

j: Ml+1,j⊆Mli

Γl+1,j,

and define P̂li : `∞(Γ̂li) → Êli by

P̂liu =
∑

j: Ml+1,j⊆Mli

Pl+1,j(u|Γl+1,j
).

So P̂li is just composite Lagrange interpolation (with respect to the pieces
Ml+1,j ⊆ Mli). Note also that since we are working in L∞(M), functions
being equal except for a set of Lebesgue measure zero are identified. Set

El =

nl∑

i=1

Eli.

Observe that this sum of subspaces is direct. The space El is just the space
of piecewise polynomials onM of maximum degree at most s−1 with respect
to the partition (Mli)

nl

i=1, with no correlation at the interfaces. Note further

that Eli ⊂ Êli ⊂ El+1 and El ⊂ El+1. Define Pl : `∞(Γl) → El by setting
for u ∈ `∞(Γl)

Plu =

nl∑

i=1

Pli(u|Γli
).

Thus Pl is the corresponding piecewise Lagrange interpolation operator. For
f ∈ C(Mli) or f ∈ C(M) we write Plif instead of Pli(f |Γli

), and similarly
P̂lif and Plf . Then we have

P̂lif =
∑

j: Ml+1,j⊆Mli

Pl+1,jf (f ∈ C(Mli))
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Plf =

nl∑

i=1

Plif (f ∈ C(M))

Pl+1f =

nl∑

i=1

P̂lif (f ∈ C(M)).

We need the following well-known properties of the operators just defined
(see, e.g., [1]): There are constants c1, c2, c3 > 0 such that for all l and i,

‖Pli : `∞(Γli) → L∞(M)‖ ≤ c1 (5)

and for f ∈ Cs(Mli),

‖f − Plif‖L∞(Mli) ≤ c2 2−sl‖f‖Cs(Mli), (6)

and hence also

‖(P̂li − Pli)f‖L∞(Mli) ≤ c3 2−sl‖f‖Cs(Mli). (7)

Unless explicitly stated otherwise, throughout this paper constants are ei-
ther absolute or may depend only on the problem parameters d1, d, s, σ,Q,
but neither on the input functions k and f nor on the algorithm parame-
ters m,n, l, i etc. Furthermore, we often use the same symbol c, c1, . . . for
possibly different positive constants (also when they appear in a sequence
of relations). Finally, log always means log2.

Now we are ready to describe the algorithm. Fix any final level m ∈ N.
We shall approximate

Tkf ≈ PmTkf = P0Tkf +
m−1∑

l=0

(Pl+1 − Pl)Tkf

= P0Tkf +
m−1∑

l=0

nl∑

i=1

(P̂li − Pli)Tkf. (8)

To approximate P0Tkf , we need approximations of

(Tkf)(x) =

∫

Q
k(x, y)f(y) dy

for x ∈ Γ0. Define

%̄ = sup{|x− y| : x ∈M, y ∈ Q}. (9)
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In the sequel, B(x, %) will always denote the closed d-dimensional ball of
radius % around x ∈ R

d. We shall use importance sampling. For this
purpose, define for x ∈ Γ0 a probability density on B(x, %̄) by setting

p(0)
x (y) = γσ(x, y)/a(0) (y ∈ B(x, %̄))

(recall the definition of γσ in (1)), where

a(0) =

∫

B(x,%̄)
γσ(x, y)dy =

∫

B(0,%̄)
γσ(0, y)dy.

It follows that for x ∈ Γ0

∫

Q
k(x, y)f(y) dy =

∫

B(x,%̄)
k(x, y)f(y)χQ(y) dy

=

∫

B(x,%̄)
a(0)k(x, y)f(y)χQ(y)γ−1

σ (x, y)p(0)
x (y) dy

=

∫

B(x,%̄)
g(0)(x, y)p(0)

x (y) dy. (10)

Here g(0)(x, y) is defined for x ∈ Γ0 and y ∈ B(x, %̄) by

g(0)(x, y) =

{
a(0)k(x, y)f(y)γ−1

σ (x, y) if y ∈ Q \ {x}
0 otherwise.

(11)

Let N (0) ∈ N, to be fixed later on, let

ξ
(0)
xj (x ∈ Γ0, j = 1, . . . , N (0))

be independent random variables with density p
(0)
x , on some probability

space (Ω,Σ, µ). Our approximation to (Tkf)(x) will be

∫

Q
k(x, y)f(y) dy ≈ ϕ(0)

x ,

where

ϕ(0)
x =

1

N (0)

N(0)∑

j=1

g(0)(x, ξ
(0)
xj ) (x ∈ Γ0). (12)

Now we construct approximations for the summands in (8) corresponding
to the l-levels. For l = 0, 1, . . . and i = 1, . . . , nl let xli be the center of Mli
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and set

%l =
√
d12

−l−1 (the radius of the sets Mli),

al =

∫

|y|≤3%l

γσ(0, y)dy =

∫

|y|≤3%l





|y|σdy if σ < 0

(| ln |y|| + 1) dy if σ = 0

dy if σ > 0.

(13)

bl =

∫

2%l<|y|≤%̄
γσ−s(0, y)dy

=

∫

2%l<|y|≤%̄





|y|σ−sdy if σ − s < 0

(| ln |y|| + 1) dy if σ − s = 0

dy if σ − s > 0.

(14)

Fix l ∈ {0, . . . ,m− 1}. We shall approximate

(P̂li − Pli)Tkf

by constructing approximations of (Tkf)(x) for x ∈ Γ̂li. We split the integral
into a local, weakly singular part and a global, smooth part,

(Tkf)(x) =

∫

B(xli,2%l)∩Q
k(x, y)f(y) dy +

∫

Q\B(xli,2%l)
k(x, y)f(y) dy, (15)

each integral of which will be approximated separately by a Monte Carlo
scheme, for x ∈ Γ̂li, using importance sampling again. For the first one,
define for each x ∈ Γl+1

plx(y) = a−1
l γσ(x, y) (y ∈ B(x, 3%l)), (16)

which is a probability density on B(x, 3%l), since by (13),
∫

B(x,3%l)
γσ(x, y)dy =

∫

B(0,3%l)
γσ(0, y)dy = al.

Observe that B(xli, 2%l) ⊂ B(x, 3%l) for all x ∈ Γ̂li. We have
∫

B(xli,2%l)∩Q
k(x, y)f(y) dy =

∫

B(x,3%l)
k(x, y)f(y)χB(xli,2%l)∩Q(y) dy

=

∫

B(x,3%l)
alk(x, y)f(y)χB(xli,2%l)∩Q(y)γ−1

σ (x, y)plx(y) dy

=

∫

B(x,3%l)
gli(x, y)plx(y) dy, (17)
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where gli(x, y) is defined for x ∈ Γ̂li and y ∈ B(x, 3%l) by

gli(x, y) =

{
alk(x, y)f(y)γ−1

σ (x, y) if y ∈ B(xli, 2%l) ∩Q \ {x}
0 otherwise.

(18)

Let Nl ∈ N (l = 0, . . . ,m− 1), also to be fixed later on, let

ξlxj (l = 0, . . . ,m− 1, x ∈ Γl+1, j = 1, . . . , Nl)

be independent (also of ξ
(0)
xj ) random variables on (Ω,Σ, µ) with density plx

given by (16). Our approximation to the first integral in (15) will be

∫

B(xli,2%l)∩Q
k(x, y)f(y) dy ≈ ϕlix,

with

ϕlix =
1

Nl

Nl∑

j=1

gli(x, ξlxj) (x ∈ Γ̂li). (19)

To approximate the second integral in (15) for x ∈ Γ̂li, we let

Cli = {y ∈ R
d : 2%l < |xli − y| ≤ %̄}.

where %̄ was defined in (9). Note that Q\B(xli, 2%l) ⊂ Cli. Thus, if 2%l ≥ %̄,
the second integral in (15) is zero. If 2%l < %̄, define a probability density
qli on Cli by setting

qli(y) = b−1
l γσ−s(xli, y)

which is justified since
∫

Cli

γσ−s(xli, y)dy =

∫

2%l<|y|≤%̄
γσ−s(0, y)dy = bl.

For any x ∈Mli we have
∫

Q\B(xli,2%l)
k(x, y)f(y) dy =

∫

Cli

blk(x, y)f(y)χQ(y)γ−1
σ−s(xli, y)qli(y) dy

=

∫

Cli

hli(x, y)qli(y) dy, (20)

where hli(x, y) is defined for x ∈Mli and y ∈ Cli by

hli(x, y) =

{
blk(x, y)f(y)γ−1

σ−s(xli, y) if y ∈ Cli ∩Q
0 otherwise.

(21)
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Let ηlij (l = 0, . . . ,m−1, i = 1, . . . , nl, j = 1, . . . , Nl) be independent (also of

ξ
(0)
xj and ξlij) random variables with density qli. We approximate for x ∈ Γ̂li

∫

Q\B(xli,2%l)
k(x, y)f(y) dy ≈ ψlix,

where

ψlix :=

{
1

Nl

∑Nl

j=1 hli(x, ηlij) if 2%l < %̄

0 if 2%l ≥ %̄.
(22)

Our final approximation will be

θ = P0

(
[ϕ(0)

x ]x∈Γ0

)
+

m−1∑

l=0

nl∑

i=1

(P̂li − Pli)
(
[ϕlix + ψlix]x∈Γ̂li

)
. (23)

This completes the description of the algorithm.
Now we analyze its error. We shall consider the expected mean square

error
e(θ) = (E ‖Tkf − θ‖2

L∞(M))
1/2.

The cost of the algorithm θ is defined as

cost(θ) = N (0) +
m−1∑

l=0

nlNl

— up to a constant this is the total number of needed function values (of k
and f), arithmetic real number operations and random variables (of type ξ
and η).

We need the following lemma, which is a consequence of Propostion 9.11
of Ledoux and Talagrand [13], see also [5].

Lemma 1. There is a constant c > 0 such that if n,N ∈ N and (ζj)
N
j=1 is

a sequence of independent `n∞–valued random variables with E ‖ζj‖2
`n
∞

< ∞
for all j, then

Var
( N∑

j=1

ζj

)

`n
∞

≤ c logn
N∑

j=1

Var(ζj)`n
∞
, (24)

where Var(ζ)Z := E ‖ζ − E ζ‖2
Z denotes the variance of a random variable ζ

with values in a Banach space Z.
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To state the following proposition, define β (this parameter will describe
the powers of the logarithmic term) as

β =





0 if min(s, d+ σ) > d1
2

3
2 if min(s, d+ σ) = d1

2 and s 6= d+ σ
5
2 if min(s, d+ σ) = d1

2 and s = d+ σ
min(s,d+σ)

d1
if min(s, d+ σ) < d1

2 and s 6= d+ σ
min(s,d+σ)

d1
+ 1 if min(s, d+ σ) < d1

2 and s = d+ σ.

(25)

Proposition 1. Given 1 ≤ d1 ≤ d, and M,Q, s, σ as above, there are
constants c1, c2 > 0 such that for each n ∈ N with n ≥ 2 there is a choice
of parameters m, N (0), (Nl)

m−1
l=0 such that the algorithm has cost(θ) ≤ c1n

and, for each k ∈ Cs,σ(M,Q) and f ∈ L∞(Q), the error satisfies

e(θ) ≤ c2n
−min

“
s

d1
, d+σ

d1
, 1
2

”

(logn)β‖k‖Cs,σ‖f‖L∞(Q).

For the proof we need some preparations, including a number of lemmas.
First note that the algorithm is bilinear in k and f , and so is the solution
Tkf , thus, we can assume without loss of generality that

‖k‖Cs,σ ≤ 1, ‖f‖L∞(Q) ≤ 1. (26)

We rewrite the algorithm into a form which is convenient for our analysis.
Setting for j = 1, . . . , N (0),

ζ
(0)
j = P0

(
[g(0)(x, ξ

(0)
xj )]x∈Γ0

)
, (27)

and for l = 0, . . . ,m− 1, j = 1, . . . , Nl,

ζlj =

nl∑

i=1

(P̂li − Pli)
(
[gli(x, ξlxj) + hli(x, ηlij)]x∈Γ̂li

)
, (28)

we obtain independent, L∞(M)-valued random variables, with ζ
(0)
j taking

values in E0 and ζlj taking values in El+1. By (12), (19), (22), and (23) we
have

θ =
1

N (0)

N(0)∑

j=1

ζ
(0)
j +

m−1∑

l=0

1

Nl

Nl∑

j=1

ζlj. (29)

11



Lemma 2. The error can be estimated by

e(θ) ≤ ‖Tkf − PmTkf‖ + (E ‖θ − E θ‖2)1/2, (30)

with a deterministic part ‖Tkf − PmTkf‖ and a stochastic part (E ‖θ −
E θ‖2)1/2.

Proof. From (10), (17), and (20) it follows that

E ζ
(0)
j = EP0

(
[g(0)(x, ξ

(0)
xj )]x∈Γ0

)
= P0

∫

Q
k( . , y)f(y)dy = P0Tkf

and

E ζlj = E

nl∑

i=1

(P̂li − Pli)
(
[gli(x, ξlxj) + hli(x, ηlij)]x∈Γ̂li

)

=

nl∑

i=1

(P̂li − Pli)

∫

Q
k( . , y)f(y)dy = (Pl+1 − Pl)Tkf.

Hence
E θ = PmTkf.

By the triangle inequality,

e(θ) ≤ ‖Tkf − PmTkf‖ + (E ‖θ − E θ‖2)1/2.

We need the following relations, which follow directly from the definitions
of the al and bl in (13) and (14) (recall also that we assumed −d < σ): For
l ∈ N0,

al ≤ c





2−(d+σ)l if σ < 0
(l + 1) 2−dl if σ = 0
2−dl if σ > 0

(31)

and

bl ≤ c





2−(d+σ−s)l if σ − s < −d
l + 1 if σ − s = −d
1 if σ − s > −d.

(32)

Observe also that for l ∈ N0, x ∈ Mli, and y ∈ Cli = B(xli, %̄) \ B(xli, 2%l),
we have

|xli − y| ≥ 2%l

|xli − x| ≤ %l ≤
1

2
|xli − y|,
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and hence

1

2
|xli − y| ≤ |x− y| ≤ 3

2
|xli − y| (x ∈Mli, y ∈ Cli). (33)

Finally, define

α0 =

{
1 if s = d+ σ
0 otherwise.

(34)

We begin with the estimate of the deterministic part in (30).

Lemma 3. The deterministic part of the error satisfies

‖Tkf − PmTkf‖ ≤ c (mα02−min(s,d+σ)m +m 2−dm). (35)

Proof. Define the restriction operator Rmi : L∞(M) → L∞(M) for f ∈
L∞(M) by

(Rmif)(y) =

{
f(y) if y ∈Mmi

0 otherwise,

and let I be the identity operator on L∞(M). Then

Tkf − PmTkf = (I − Pm)

∫

Q
k( . , y)f(y)dy

=

nm∑

i=1

(Rmi − Pmi)

∫

Q
k( . , y)f(y)dy. (36)

It follows from (2), (13), (26), and (31) that for x ∈Mmi

∫

B(xmi,2%m)∩Q
k(x, y)f(y)dy ≤

∫

B(x,3%m)
γσ(x, y)dy

=

∫

B(0,3%m)
γσ(0, y)dy

≤ c (2−(d+σ)m +m 2−dm). (37)

Furthermore, from (2), (26) and (33), for α ∈ N
d1
0 , |α| ≤ s, x ∈Mmi,

∣∣∣∣∣D
α
x

∫

Q\B(xmi,2%m)
k(x, y)f(y)dy

∣∣∣∣∣ ≤
∫

Q\B(xmi,2%m)
γσ−|α|(x, y)dy

≤ c

∫

Q\B(xmi,2%m)
γσ−|α|(xmi, y)dy

≤ c

∫

2%m<|y|≤%̄
γσ−|α|(0, y)dy. (38)

13



Using (14) and (32), we derive from (38)
∥∥∥∥∥

∫

Q\B(xmi,2%m)
k( . , y)f(y)dy

∥∥∥∥∥
Cs(Mmi)

≤ c





2−(d+σ−s)m if σ − s < −d
m if σ − s = −d
1 if σ − s > −d.

(39)

From (37) and (5) we conclude
∥∥∥∥∥(Rmi − Pmi)

∫

B(xmi,2%m)∩Q
k( . , y)f(y)dy

∥∥∥∥∥
L∞(M)

≤ c (2−(d+σ)m +m 2−dm),

while from (39) and (6) it follows that
∥∥∥∥∥(Rmi − Pmi)

∫

Q\B(xmi,2%m)
k( . , y)f(y)dy

∥∥∥∥∥
L∞(M)

≤ cmα02−min(s,d+σ)m. (40)

By (36), this yields the needed estimate:

‖Tkf − PmTkf‖ ≤ c (mα02−min(s,d+σ)m +m 2−dm).

Now we turn to the stochastic part in (30). We need two different esti-
mates of it.

Lemma 4. The stochastic part of the error satisfies

(E ‖θ − E θ‖2)1/2

≤ cm1/2

((
N (0)

)−1
+

m−1∑

l=0

N−1
l

(
(l + 1)α02−min(s,d+σ)l + (l + 1) 2−dl

)2
)1/2

, (41)

where α0 was defined in (34). Furthermore,

(E ‖θ − E θ‖2)1/2

≤ c
(
N (0)

)−1/2
+

c
m−1∑

l=0

(l + 1)1/2N
−1/2
l

(
(l + 1)α02−min(s,d+σ)l + (l + 1) 2−dl

)
. (42)
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Proof. It follows from (2) and (11) that

sup
x∈Γ0, y∈B(x,%̄)

|g(0)(x, y)| ≤ c, (43)

and from (2), (18), and (31) that

sup
x∈Γ̂li, y∈B(x,3%l)

|gli(x, y)| ≤ c (2−(d+σ)l + (l + 1) 2−dl). (44)

Using the assumptions on k and the definition (21) of hli, it is readily seen
that hli( . , y) ∈ Cs(Mli) for all y ∈ Cli. Moreover, (2), (32), and (33) imply

sup
y∈Cli

‖hli( . , y)‖Cs(Mli) ≤ c bl sup
x∈Mli, y∈Cli

γσ−s(x, y)

γσ−s(xli, y)

≤ c bl ≤ c





2−(d+σ−s)l if σ − s < −d
l + 1 if σ − s = −d
1 if σ − s > −d,

and hence, because of (7),

sup
y∈Cli

‖(P̂li − Pli)hli( . , y)‖L∞(M)

≤ c 2−sl sup
y∈Cli

‖hli( . , y)‖Cs(Mli) ≤ c (l + 1)α02−min(s,d+σ)l. (45)

Note that
c12

d1l ≤ dimEl ≤ c22
d1l. (46)

Furthermore, the spacesEl (l = 0, . . . ,m), considered in the norm of L∞(M),
are uniformly ismorphic to `dim El∞ in the sense that there exist linear iso-
morphisms Ul : `dim El∞ → El with

‖Ul‖ ‖U−1
l ‖ ≤ c,

where c is independent of l and m. This is readily checked by identifying
`dim El∞ with `∞ (∗∪nl

i=1Γli), where ∗∪ stands for the disjoint union, and setting

Ulv =

nl∑

i=1

Pli(v |Γli
).

By (27), (43) and (5),

sup
ω∈Ω

‖ζ(0)
j (ω)‖L∞(M) ≤ c. (47)
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Moreover, by (28), (44), (5), and (45)

sup
ω∈Ω

‖ζlj(ω)‖L∞(M) ≤ c ((l + 1)α02−min(s,d+σ)l + (l + 1) 2−dl). (48)

Now the first estimate (41) follows from Lemma 1, (29), (46), (47), and (48):

(E ‖θ − E θ‖2)1/2 = Var(θ)
1/2
L∞(M) = Var(θ)

1/2
Em

≤ cm1/2


(N (0)

)−2
N(0)∑

j=1

Var
(
ζ
(0)
j

)
Em

+
m−1∑

l=0

N−2
l

Nl∑

j=1

Var(ζlj)Em




1/2

≤ cm1/2

((
N (0)

)−1
+

m−1∑

l=0

N−1
l

(
(l + 1)α02−min(s,d+σ)l + (l + 1) 2−dl

)2
)1/2

.

Here we used that

Var(ζ)Em
= Var(ζ)L∞(M) ≤ 4E ‖ζ‖2

L∞(M) ≤ 4 sup
ω∈Ω

‖ζ(ω)‖2
L∞(M)

for a random variable ζ on (Ω,Σ, µ) with values in Em ⊂ L∞(M). Applying
first the triangle inequality and then Lemma 1 for each l separately gives
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the desired second estimate (42):

(E ‖θ − E θ‖2)1/2 = Var(θ)
1/2
L∞(M)

≤ Var


 1

N (0)

N(0)∑

j=1

ζ
(0)
j




1/2

L∞(M)

+
m−1∑

l=0

Var


 1

Nl

Nl∑

j=1

ζlj




1/2

L∞(M)

= Var


 1

N (0)

N(0)∑

j=1

ζ
(0)
j




1/2

E0

+
m−1∑

l=0

Var


 1

Nl

Nl∑

j=1

ζlj




1/2

El+1

≤ c


(N (0)

)−2
N(0)∑

j=1

Var
(
ζ
(0)
l

)
E0




1/2

+

c
m−1∑

l=0

(l + 1)1/2


N−2

l

Nl∑

j=1

Var (ζlj)El+1




1/2

≤ c
(
N (0)

)−1/2
+

c
m−1∑

l=0

(l + 1)1/2N
−1/2
l

(
(l + 1)α02−min(s,d+σ)l + (l + 1) 2−dl

)
.

Proof of Proposition 1. It remains to provide the choice of parameters and
to derive the final error estimates. Let n ∈ N with n ≥ 2 be given. First
assume that min(s, d+ σ) > d1/2. Choose any τ > 0 such that

min(s, d+ σ, d) > (d1 + τ)/2,

and let (recall that log always means log2)

m =

⌈
logn

d1 + τ

⌉
,

N (0) = n, Nl =
⌈
n 2−(d1+τ)l

⌉
(l = 0, . . . ,m− 1).

Then the cost is bounded by

cost(θ) = N (0) +
m−1∑

l=0

nlNl ≤ n+
m−1∑

l=0

2d1l(n2−(d1+τ)l + 1)

≤ c(n+ 2d1m) ≤ c n.
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We estimate the stochastic error by Lemma 4, (42):

(E ‖θ − E θ‖2)1/2

≤ c n−1/2 +

c

m−1∑

l=0

(l + 1)1/2n−1/22(d1+τ)l/2
(
(l + 1)α02−min(s,d+σ)l + (l + 1)2−dl

)

≤ cn−1/2.

By Lemma 3,

‖Tkf −PmTkf‖ ≤ c (mα02−min(s,d+σ)m +m 2−dm) ≤ c 2−(d1+τ)m/2 ≤ cn−1/2.

Now the desired result follows from Lemma 2.
Next assume min(s, d+ σ) = d1/2. We put

m =

⌈
logn

d1

⌉
, (49)

and
N (0) = n, Nl =

⌈
nm−12−d1l

⌉
(l = 0, . . . ,m− 1).

Then the cost can be estimated by

N (0) +
m−1∑

l=0

nlNl ≤ n+
m−1∑

l=0

2d1l(nm−12−d1l + 1) ≤ c(n+ 2d1m) ≤ c n.

By Lemma 4, (41), the stochastic error satisfies

(E ‖θ − E θ‖2)1/2

≤ cm1/2

(
n−1 +

m−1∑

l=0

n−1m2d1l
(
(l + 1)2α02−2min(s,d+σ)l + (l + 1)22−2dl

))1/2

≤ cmn−1/2

(
m−1∑

l=0

(l + 1)2α0

)1/2

≤ cn−1/2mα0+3/2 ≤ cn−1/2(logn)α0+3/2.

Furthermore, by Lemma 3,

‖Tkf − PmTkf‖ ≤ c(mα02−d1m/2 +m2−dm) ≤ cn−1/2(logn)α0 .
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An application of Lemma 2 concludes the proof in this case.
Finally, we assume min(s, d+ σ) < d1/2. Choose any τ with

0 < τ < d1 − 2min(s, d+ σ),

and put

m =

⌈
logn− log logn

d1

⌉
, (50)

N (0) = n, Nl =
⌈
n 2−d1l−τ(m−l)

⌉
(l = 0, . . . ,m− 1).

Note that (50) implies

(n/ logn)1/d1 ≤ 2m ≤ 2(n/ logn)1/d1.

The cost is bounded by

N (0) +
m−1∑

l=0

nlNl ≤ n+
m−1∑

l=0

2d1l(n2−d1l−τ(m−l) + 1)

≤ c

(
n

m−1∑

l=0

2−τ(m−l) + 2d1m

)
≤ c n.

Relation (41) of Lemma 4 gives

(E ‖θ − E θ‖2)1/2

≤ cm1/2

(
n−1 +

m−1∑

l=0

n−12d1l+τ(m−l)
(
(l + 1)2α02−2min(s,d+σ)l + (l + 1)22−2dl

))1/2

≤ cm1/2

(
n−1 +

m−1∑

l=0

n−12d1l+τ(m−l)(l + 1)2α02−2min(s,d+σ)l

)1/2

≤ cn−1/2m1/2+α0

(
2τm

m−1∑

l=0

2(d1−τ−2min(s,d+σ))l

)1/2

≤ cn−1/2m1/2+α02(d1/2−min(s,d+σ))m

≤ cn−1/2(logn)1/2+α0(n/ log n)(d1/2−min(s,d+σ))/d1

≤ cn−min(s,d+σ)/d1(logn)min(s,d+σ)/d1+α0 .

19



Moreover, using Lemma 3 again,

‖Tkf − PmTkf‖ ≤ c (mα02−min(s,d+σ)m +m 2−dm) ≤ cmα02−min(s,d+σ)m

≤ cn−min(s,d+σ)/d1(logn)α0+min(s,d+σ)/d1.

A final application of Lemma 2 completes the proof.

4 Lower bounds and complexity

We shall be concerned with the information complexity exclusively, that is,
we only count information operations. This makes the lower bound state-
ments stronger. The upper bounds obtained in the previous section were
anyway accompanied by estimates of the total cost, including arithmetic
operations and random variable generation.

First we describe the needed notions in a general framework. We refer
to [19] and [17] for further background on the theory of information-based
complexity. A numerical problem is given by a tuple P = (F,G, S,K,Λ),
where F is a non-empty set, G a normed space over K, where K stands
for the set of real or complex numbers, S a mapping from F to G, K a
non-empty set and Λ a non-empty set of mappings from F to K. We seek
to compute (approximately) S(f) for f ∈ F using information about f ∈ F
of the form λ(f) for λ ∈ Λ.

Usually F is a set in a function space, S is the solution operator, mapping
the input f ∈ F to the exact solution S(f) of our problem, which we want to
approximate. Λ is usually a set of linear functionals, and K is mostly R or
C (however, for understanding the complexity under certain more powerful
information assumptions, like, e.g., in [8], it is convenient to keepK general).
G is usually a space containing both the solutions and the approximations,
and it is equipped with a norm, in which the error is measured. (Compare
also the specifications to our situation given before Propositions 2 and 3.)

Let k∗ = K. (We want {k∗} to be any one-element set such that k∗ 6∈ K.
With the choice k∗ = K, this is the case, since a set never contains itself as
an element.) We use this to define the zero-th power of K as K0 = {k∗}. In
the sequel it will be convenient to consider f ∈ F also as a function on Λ
with values in K by setting f(λ) := λ(f). Let F(Λ,K) denote the set of all
functions from Λ to K.

A deterministic algorithm A for P is a tuple

A = ((Li)
∞
i=1, (τi)

∞
i=0, (ϕi)

∞
i=0)
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where for each i,

Li : Ki−1 → Λ

τi : Ki → {0, 1}
ϕi : Ki → G

are any mappings. Given f ∈ F(Λ,K), we associate with it a sequence
(zi)

∞
i=0 with zi ∈ Ki, we call it the computational sequence of A at input f ,

defined as follows:

z0 = k∗

zi = (f(L1(z0)), . . . , f(Li(zi−1))) (i ≥ 1).

Let the cardinality card(A, f) of A at input f be the first integer n ≥ 0 with
τn(zn) = 1, and put card(A, f) = +∞ if there is no such n. Define

Dom(A) = {f ∈ F(Λ,K) : card(A, f) <∞}.

For f ∈ Dom(A) and n = card(A, f) we define the output A(f) of algorithm
A at input f as

A(f) = ϕn(zn).

Let Adet(P) be the set of all deterministic algorithms for P. If P is fixed,
we write shortly Adet. For A ∈ Adet define

card(A,F ) = sup
f∈F

card(A, f),

and the error of A as

e(S,A, F ) = sup
f∈F

‖S(f) −A(f)‖G

if F ⊆ Dom(A), and e(S,A, F ) = +∞ otherwise. Furthermore, for n ∈ N0,
let the n-th deterministic minimal error be defined as

edet
n (S, F ) = inf{e(S,A, F ) : A ∈ Adet, card(A,F ) ≤ n}.

The meaning of this crucial quantity of information-based complexity is the
following: No deterministic algorithm that uses at most n informations on
f can provide a smaller error than edet

n (S, F ).
A randomized (or Monte Carlo) algorithm for P

A = ((Ω,Σ, µ), (Aω)ω∈Ω),
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consists of a probability space (Ω,Σ, µ), and a family

Aω ∈ Adet(P) (ω ∈ Ω).

Define Dom(A) to be the set of all f ∈ F(Λ,K) such that card(Aω, f) is a
measurable function of ω,

card(Aω, f) <∞ for almost all ω ∈ Ω,

and Aω(f) is a G-valued random variable, meaning that Aω(f) is Borel
measurable and there is a separable subspace G0 of G (which may depend
on f) such that

Aω(f) ∈ G0 for almost all ω ∈ Ω.

Let Aran(P), or shortly Aran denote the class of all randomized algorithms
for P. Given A ∈ Aran and f ∈ F(Λ,K), define

card(A, f) =

∫

Ω
card(Aω, f) dµ(ω)

if f ∈ Dom(A) and card(A, f) = +∞ otherwise. Put

card(A,F ) = sup
f∈F

card(A, f).

The error of A ∈ Aran is given by

e(S,A, F ) = sup
f∈F

∫

Ω
‖S(f) −Aω(f)‖G dµ(ω).

if F ⊆ Dom(A), and e(S,A, F ) = +∞ otherwise. We have chosen the first
moment, that is, the L1(Ω, µ) norm for the error. Clearly, we could have
considered the error also in the sense of Lp(Ω, µ), 1 < p < ∞, which would
not cause essential changes. For n ∈ N0 the n-th randomized minimal error
is defined as

eran
n (S, F ) = inf{e(S,A, F ) : A ∈ Aran, card(A,F ) ≤ n}.

Hence, no randomized algorithm that uses (on the average) at most n infor-
mation functionals can provide a smaller error than eran

n (S, F ).
We shall reduce the lower estimate of the minimal randomized error in

the usual way to the average case setting. We only need measures whose
support is a finite set. So let ν be such a measure on F , let A ∈ Adet. Put

card(A, ν) =

∫

F
card(A, f) dν(f),

e(S,A, ν) =

∫

F
‖S(f) − A(f)‖G dν(f),

eavg
n (S, ν) = inf{e(S,A, ν) : A ∈ Adet, card(A, ν) ≤ n}.
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Lemma 5. For each probability measure ν on F of finite support and each
n ∈ N,

eran
n (S, F ) ≥ 1

2
eavg
2n (S, ν).

This is well-known, and can be found, for example, in [5]. Although
dealing with a slightly less general setting, the proof of Lemma 2 in there
literally carries over.

Next we consider problems P which are linear in the sense that K = K

(the set of real or complex numbers), F is a subset of a linear space X
over K, S is the restriction to F of a linear operator from X to G, and all
mappings λ ∈ Λ are restrictions to F of linear mappings from X to K.

Lemma 6. Let n, n̄ ∈ N with n̄ > 2n, assume that there are (fi)
n̄
i=1 ⊆ F

such that the sets {λ ∈ Λ : fi(λ) 6= 0} (i = 1, . . . , n̄) are mutually disjoint,
and for all sequences (αi)

n̄
i=1 ∈ {−1, 1}n̄ we have

∑n̄
i=1 αifi ∈ F . Define the

measure ν on F to be the distribution of
∑n̄

i=1 εifi, where εi are independent
Bernoulli random variables with P{εi = 1} = P{εi = −1} = 1/2. Then

eavg
n (S, ν) ≥ 1

2
min

I
E ‖
∑

i∈I

εiS(fi)‖G,

where the minimum is taken over all subsets I of {1, . . . , n̄} with |I| ≥ n̄−2n.

The proof follows the lines of the lower bound proof in [5], pp. 170-173.
We omit it here.

Corollary 1. There is a constant c > 0 such that if G is a Hilbert space,
then under the assumptions of Lemma 6,

eavg
n (S, ν) ≥ cmin

I

(
∑

i∈I

‖S(fi)‖2
G

)1/2

,

the minimum taken over all subsets I of {1, . . . , n̄} with |I| ≥ n̄− 2n.

Proof. This is a direct consequence of the generalized parallelogram identity

E ‖
m∑

i=1

εiui‖2
G =

m∑

i=1

‖ui‖2
G
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for elements ui in a Hilbert space G, and the equivalence of moments, see
[13], Theorem 4.7, which asserts the existence of an absolute constant c > 0
with

E ‖
m∑

i=1

εiui‖G ≥ c

(
E ‖

m∑

i=1

εiui‖2
G

)1/2

.

An important tool for lower bound proofs is reduction. We need a simple
result, which is a special case of Proposition 1 in [9].

Let P̃ = (F̃ , G̃, S̃, K̃, Λ̃) be another numerical problem. Assume that
R : F → F̃ is a mapping such that there exist mappings η : Λ̃ → Λ and
% : Λ̃ ×K → K̃ with

(R(f))(λ̃) = %(λ̃, f(η(λ̃))) (51)

for all f ∈ F and λ̃ ∈ Λ̃. Suppose that L : G̃ → G is a Lipschitz mapping,
that is, there is a constant c ≥ 0 such that

‖L(x) − L(y)‖G ≤ c ‖x− y‖ eG for all x, y ∈ G̃.

The Lipschitz constant ‖L‖Lip is the smallest constant c such that the rela-
tion above holds. Finally, assume that

S = L ◦ S̃ ◦R.

Lemma 7. For all n ∈ N0,

eran
n (S, F ) ≤ ‖L‖Lip e

ran
n (S̃, F̃ ). (52)

Now we return to the concrete numerical problems studied before. Let
M and Q be as defined in the beginning, including the case d1 = 0. We as-
sume, additionally, that Q has non-empty interior. Our first result concerns
integral operators with a fixed, weakly singular kernel k ∈ Cs,σ(M,Q). Let
L∞(Q) be the linear space of all Lebesgue measurable essentially bounded
real-valued functions on Q, equipped with the seminorm

|f |L∞
= ess supy∈Q|f(y)|.

Note that the space L∞(Q) consists of functions defined everywhere onQ. In
contrast, the space L∞(Q) consists of equivalence classes, being the quotient
of L∞(Q) over the subspace {|f |L∞

= 0}. The reason for this distinction
is that in L∞(Q) function values are defined, while they are not in L∞(Q).
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As a target space, we still use the normed space L∞(M). So we consider
Tk as an operator from L∞(Q) to L∞(M) (note that Tk is defined correctly
on both L∞(Q) and L∞(Q), we therefore use the same notation Tk in both
cases). For the following proposition we set

F = BL∞(Q) = {f ∈ L∞(Q) : |f |L∞
≤ 1},

G =

{
L∞(M) if d1 ≥ 1
R if d1 = 0,

S = Tk, and Λ = {δy : y ∈ Q}, where δy(f) = f(y) for f ∈ BL∞(Q).
Throughout the rest of this section and also in the next section we will have
K = K = R, so we do not repeat this assumption.

Define

α1 =

{
1
2 if d1 = d = −2σ

0 otherwise.
(53)

Proposition 2. Let 0 ≤ d1 ≤ d, assume that Q has non-empty interior,
and let k ∈ Cs,σ(M,Q). Depending on the parameters, we make the following
further assumptions about k:

1. If σ ≤ d1/2 − d (which implies d1 6= 0), we suppose that there exist
x0 ∈ M0 ∩ Q0, δ0 > 0 and ϑ0 6= 0 such that ϑ0k(x, y) ≥ |x − y|σ for
all x ∈M and y ∈ Q with |x− x0| ≤ δ0, |y − x0| ≤ δ0, and x 6= y.

2. If σ > d1/2 − d and d1 ≥ 1, we assume that there exist x0 ∈ M0,
y0 ∈ Q0, δ0 > 0 and ϑ0 6= 0 such that ϑ0k(x, y) ≥ 1 for all x ∈M and
y ∈ Q with |x− x0| ≤ δ0, |y − y0| ≤ δ0, and x 6= y.

3. If d1 = 0, we suppose that there exist y0 ∈ Q0, δ0 > 0 and ϑ0 6= 0 such
that ϑ0k(0, y) ≥ 1 for all y ∈ Q with |y − y0| ≤ δ0 and y 6= 0.

Then there is a constant c > 0 (depending on k) such that for all n ∈ N with
n ≥ 2,

eran
n (Tk,BL∞(Q)) ≥ cn

−min
“

d+σ
d1

, 1
2

”

(logn)α1

(with d+σ
d1

interpreted as +∞ for d1 = 0).

Proof. Case 1: Since x0 is an inner point of Q, we can find a cube Q′ =
x0 + δ1[−1/2, 1/2]d contained in Q. By choosing δ1 > 0 small enough, we
may assume that |y − x0| ≤ δ0 for all y ∈ Q′, and, since x0 is also an inner
point of M , that M ′ = x0 + δ1[−1/2, 1/2]d1 × {0(d−d1)} is contained in M .
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It follows that M ′ ⊆ Q′ and ϑ0k(x, y) ≥ |x− y|σ for all x ∈ M ′ and y ∈ Q′

with x 6= y. Let n ∈ N, n ≥ 2. Set

m =

⌈
logn

d1

⌉
+
⌈
log

√
d
⌉

+ 3. (54)

Let {Q′
i, i = 1, . . . , 2dm} be the canonical decomposition of Q′ into closed

subcubes of sidelength 2−mδ1. Let ψ be a continuous function on R
d with

suppψ ⊆ Q′ and 0 < ψ(y) ≤ 1 for all y in the interior of Q′. Let ψi be the
function obtained by shrinking ψ to Q′

i, i.e.,

ψi(y) = ψ(x0 + 2m(y − yi)),

with yi the center of Q′
i. Fix 1 ≤ i ≤ 2dm and let x ∈M ′ satisfy

|x− yi| ≥
√
d 2−mδ1. (55)

Observe that for all y ∈ Q′
i,

|yi − y| ≤
√
d 2−m−1δ1.

Therefore,

|x− y| ≤ |x− yi| + |yi − y| ≤ 3

2
|x− yi|.

Since, by assumption of case 1, σ < 0, we get

|(Tkψi)(x)| ≥ |ϑ0|−1

∫

Q′

|x− y|σψi(y)dy

≥ |ϑ0|−1

(
3

2
|x− yi|

)σ ∫

Q′

ψi(y)dy

≥ c2−dm|x− yi|σ, (56)

provided (55) holds (the constants appearing in this proof may depend on
k). Define J : L∞(M) → L2(M

′) by Jf = f |M ′ . Let

Im = {1 ≤ i ≤ 2dm : Q′
i ∩M ′ 6= ∅}.

Then
|Im| = 2d1m+d−d1,

and therefore, by (54),
|Im| ≥ 8n. (57)
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By (56) we have for i ∈ Im

‖JTkψi‖2
L2(M ′) ≥ c2−2dm

∫

{x∈M ′ : |x−yi|≥
√

d 2−mδ1}
|x− yi|2σdx. (58)

Let y′i be the orthogonal projection of yi onto R
d1 × {0(d−d1)}. Clearly,

y′i ∈M ′, and for all x ∈M ′,

|x− y′i| ≤ |x− yi|. (59)

Since i ∈ Im, it follows that

|y′i − yi| =
√
d− d12

−m−1δ1 <
√
d2−m−1δ1.

Therefore, under asssumption (55)

√
d2−mδ1 ≤ |x− yi| ≤ |x− y′i| + |y′i − yi| ≤ |x− y′i| +

√
d2−m−1δ1,

which, in turn, implies
|x− yi| ≤ 2|x− y′i|. (60)

From relations (59) and (60) we get

∫

{x∈M ′ : |x−yi|≥
√

d 2−mδ1}
|x− yi|2σdx

≥ 22σ

∫

{x∈M ′ : |x−y′

i|≥
√

d 2−mδ1}
|x− y′i|2σdx

≥ 22σ

∫

{x∈M ′ :
√

d 2−mδ1≤|x−y′

i
|≤2−1δ1}

|x− y′i|2σdx. (61)

Since 2−1δ1 is half the side length of M ′, at least one (d1-dimensional)
quadrant of the ball

{
x ∈ R

d1 : |x− y′i| ≤ 2−1δ1

}

fully belongs to M ′. This gives

∫

{x∈M ′ :
√

d 2−mδ1≤|x−y′

i|≤2−1δ1}
|x− y′i|2σdx

≥ 2−d1

∫

{x∈Rd1 :
√

d 2−mδ1≤|x−y′

i|≤2−1δ1}
|x− y′i|2σdx. (62)
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By (54),
2
√
d2−mδ1 ≤ 2−1δ1.

Therefore
∫

{x∈Rd1 :
√

d 2−mδ1≤|x−y′

i|≤2−1δ1}
|x− y′i|2σdx ≥ c 2−(d1+2σ)mm2α1, (63)

where α1 = 1/2 if σ = −d1/2 (which, because of σ ≤ d1/2 − d, can only
happen if we also have d1 = d) and α1 = 0 otherwise. Joining (58) with
(61–63), we obtain

‖JTkψi‖2
L2(M ′) ≥ c2−(2d+d1+2σ)mm2α1.

Using Lemma 5, Corollary 1, and (57), we get

eran
n (JTk,BL∞(Q))

2 ≥ c n2−(2d+2σ+d1)mm2α1, (64)

Since ‖J‖ ≤ 1, a simple consequence of Lemma 7 is

eran
n (Tk,BL∞(Q)) ≥ eran

n (JTk,BL∞(Q)),

which together with (54) and (64) gives,

eran
n (Tk,BL∞(Q)) ≥ cn−(d+σ)/d1(logn)α1 .

Case 2: Here we argue similarly. We put Q′ = y0 + δ1[−1/2, 1/2]d and
M ′ = x0 + δ1[−1/2, 1/2]d1 × {0(d−d1)}. We choose δ1 > 0 so small that
M ′ ⊆ M , Q′ ⊆ Q, and ϑ0k(x, y) ≥ 1 for all x ∈ M ′ and y ∈ Q′ with x 6= y.
Let n ∈ N, put

m =

⌈
logn

d

⌉
+ 3, (65)

and let ψi (i = 1, . . . , 2dm) be defined as above. Then for x ∈M ′,

|(Tkψi)(x)| ≥ |ϑ0|−1

∫

Q′

ψi(y)dy ≥ c 2−dm

and hence, for i = 1, . . . , 2dm,

‖JTkψi‖2
L2(M ′) ≥ c 2−2dm.

Using (65), it follows as in the proof of (i) that

eran
n (Tk,BL∞(Q)) ≥ eran

n (JTk,BL∞(Q)) ≥ c 2−dm/2 ≥ cn−1/2.

The same argument can be used for the case 3, with L2(M
′) replaced by

R.
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Note that the case d1 = 0 is essentially the known lower bound for
integration.

The following theorem summarizes our results for the case of a single,
fixed operator and shows that upper and lower bounds are matching, up to
logarithmic factors.

Theorem 1. Let 0 ≤ d1 ≤ d, let σ ∈ R, −d < σ < +∞, let M,Q be as
defined in section 2, assume that Q has non-empty interior, and let s ∈ N

be such that s
d1

≥ min
(

d+σ
d1
, 1

2

)
. Then there is a constant c1 > 0 such that

for all k ∈ Cs,σ(M,Q) and n ∈ N with n ≥ 2,

eran
n (Tk,BL∞(Q)) ≤ c1‖k‖Cs,σn

−min
“

d+σ
d1

, 1
2

”

(logn)β.

Moreover, for each k ∈ Cs,σ(M,Q) satisfying the assumptions of Proposition
2 there is a constant c2 > 0 (which may depend on k) such that for all n ∈ N

with n ≥ 2,

c1n
−min

“
d+σ
d1

, 1
2

”

(logn)α1 ≤ eran
n (Tk,BL∞(Q)).

The constants α1 and β were defined in (53) and (25), respectively,

Proof. The lower bound is a consequence of Proposition 2. The upper bound
for d1 ≥ 1 follows from Proposition 1. Note that Proposition 1 gives an upper
bound for the L2(Ω, µ) error, which is, of course, also an upper bound for
the L1(Ω, µ) error used in the definition of eran

n . It remains to verify the
upper bound in case d1 = 0. This, however, is just (weighted) integration of
f :

Tkf =

∫

Q
k(0, y)f(y)dy,

and its randomized approximation is well-known. Indeed, consider it as in-
tegration of the function k(0, y)f(y)χQ(y) over B(0, %̄), where %̄ = sup{|y| :
y ∈ Q}. Using the standard Monte Carlo method with importance sampling
with n samples of density p(y) = a−1γσ(0, y), where

a =

∫

B(0,%̄)
γσ(0, y)dy

(this is just the ϕ(0) approximation from section 3, that is, the algorithm
with m = 0), it follows readily that the expected mean square error is
≤ cn−1/2‖k‖Cs,σ .
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For the next result we specify F = BCs,σ(M,Q) × BL∞(Q), G = L∞(M)
(replaced by R, if d1 = 0), the solution operator S is given by S(k, f) = Tkf ,
and

Λ =
{
δα
(x,y) : (x, y) ∈M ×Q \ diag(M,Q), α ∈ N

d1
0 , |α| ≤ s

}

∪{δy : y ∈ Q} ,

where δα
(x,y)(k, f) = Dα

xk(x, y) and δy(k, f) = f(y). We define α2 as

α2 =





s
d1

if s
d1

≤ min
(

d+σ
d1
, 1

2

)

1
2 if s

d1
> min

(
d+σ
d1
, 1

2

)
and d1 = d = −2σ

0 otherwise.

(66)

Proposition 3. Let 0 ≤ d1 ≤ d and assume that Q has non-empty interior.
Then there is a constant c > 0 such that for all n ∈ N with n ≥ 2 the
following holds:

eran
n (S, F ) ≥ cn

−min
“

s
d1

, d+σ
d1

, 1
2

”

(logn)α2 .

Proof. First we consider the case

s

d1
≤ min

(
d+ σ

d1
,
1

2

)
.

Let x0 be any inner point of Q, let Q′, be any cube of the form Q′ = x0 +
δ1[−1

2 ,
1
2 ]d contained in Q. Let f0 be the function on Q which is identically

equal to 1. Define R1 : Cs
0(M × Q′) → Cs,σ(M,Q) × L∞(Q) by setting

R1(g) = (k, f0) for g ∈ Cs
0(M ×Q′), where

k(x, y) =

{
c1g(x, y) if y ∈ Q′

0 otherwise,

for (x, y) ∈M ×Q, and

c1 = inf{γσ−l(x, y) : 0 ≤ l ≤ s, x ∈M, y ∈ Q′, x 6= y}.

Put F1 = BCs
0(M×Q′), G1 = L∞(M), and

Λ1 = {δα
(x,y) : (x, y) ∈M ×Q′, α ∈ N

d1+d
0 , |α| ≤ s},
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where δα
(x,y)g(x, y) = Dαg(x, y) is the partial derivative with respect to the

variables x and y. Define S1 : Cs
0(M ×Q′) → L∞(M) by

(S1g)(x) =

∫

Q′

g(x, y)dy (x ∈M)

for g ∈ Cs
0(M ×Q′). We have

c−1
1 (S ◦R1(g))(x) = c−1

1

∫

Q
k(x, y)f0(y)dy =

∫

Q′

g(x, y)dy = (S1g)(x),

R1 maps BCs
0(M×Q′) = F1 to BCs,σ(M,Q) × BL∞(Q) = F , and is of the form

(51). Therefore, by Lemma 7,

eran
n (S1, BCs

0(M×Q′)) ≤ c−1
1 eran

n (S, F ).

Since s/d1 ≤ 1/2, [10], Prop. 5.1 gives

eran
n (S1, BCs

0(M×Q′)) ≥ cn−s/d1(logn)s/d1 (67)

(the related lower bound proof also holds for functions which satisfy the
boundary conditions, and for L∞(M) instead of C(M) as a target space).
Consequently,

eran
n (S, F ) ≥ cn−s/d1(logn)s/d1 .

Now we assume
s

d1
> min

(
d+ σ

d1
,
1

2

)

and use Proposition 2 for a reduction. Put

k(x, y) =

{
|x− y|σ if σ ≤ d1/2 − d
1 if σ > d1/2 − d

(x ∈M,y ∈ Q,x 6= y).

Let k0 = ‖k‖−1
Cs,σk, define

R2 : L∞(Q) → Cs,σ(M,Q) × L∞(Q)

by
R2(f) = (k0, f)

and let S2 = Tk0 . We set F2 = BL∞(Q), G2 = L∞(M), and Λ2 = {δy : y ∈
Q}. Then S2 = S ◦ R2, R2(F2) ⊆ F , and R2 is of the form (51). It follows
from Lemma 7 and Proposition 2 that

eran
n (S, F ) ≥ cn

−min
“

d+σ
d1

, 1
2

”

(logn)α1.
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As a consequence of Propositions 1 and 3 we get matching, up to log-
arithmic factors, upper and lower bounds for the minimal error eran

n (S, F ),
with α2 and β defined in (66) and (25), respectively.

Theorem 2. Let 0 ≤ d1 ≤ d, let σ ∈ R, −d < σ < +∞, let M,Q be as
defined in section 2, assume that Q has non-empty interior, and let s ∈ N.
Then there are constants c1, c2 > 0 such that for all n ∈ N with n ≥ 2 the
following holds:

cn
−min

“
s

d1
, d+σ

d1
, 1
2

”

(logn)α2 ≤ eran
n (S, F ) ≤ n

−min
“

s
d1

, d+σ
d1

, 1
2

”

(logn)β.

5 An application to Poisson’s equation

We study a simple prototype problem, the randomized complexity of which
nevertheless has been left open so far: Let d ≥ 2 and 0 ≤ d1 ≤ d. Let
Q ⊂ R

d be the d-dimensional (Euclidean) unit ball around zero and let M
be a d1-dimensional cube, contained in the interior of Q, that is, if d1 ≥ 1,

M = x0 + a[0, 1]d1 × {0(d−d1)} ⊂ Q0,

where a > 0, and M = {x0} ⊂ Q0 if d1 = 0. For f ∈ L∞(Q) let u ∈ C(Q)
be the (generalized) solution of

−∆u = f u|∂Q = 0. (68)

Define S1 : L∞(Q) → L∞(M) as

S1f = u|M ,

that is, given f ∈ L∞(Q), we want to compute the solution u on a d1-
dimensional subcube, the error measured in the norm of L∞(M). So here
we put F = BL∞(Q), G = L∞(M), and Λ = {δy : y ∈ Q} (in the case
d1 = 0 we replace L∞(M) by R). The Green’s function for problem (68) is
explicitly known:

k(x, y) =





1
(d−2)c(d)

(
1

|x−y|d−2 − 1
(|y||x−ȳ|)d−2

)
if d ≥ 3

− 1
2π (ln |x− y| − ln(|y||x− ȳ|)) if d = 2.

(69)

and is defined for all x, y ∈ Q with x 6= y. Here ȳ = y/|y|2 and c(d) is the
surface measure of the unit sphere in R

d. If y = 0, then the second term
in the brackets on the right-hand side is replaced by 1 for d ≥ 3 and by
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0 for d = 2. So the solution to (68) is given by Tkf , or, in other words,
S1 = Tk. We have k ∈ Cs,2−d(M,Q) for all s ≥ 1. Indeed, since the closed
set M is contained in the open set Q0 and ȳ is in the complement of Q0, the
respective second term on the right-hand side of (69) is in Cs,σ(M,Q) for all
s ∈ N and σ > 0. That the first term belongs to Cs,2−d(M,Q) for all s ∈ N

was already discussed in Section 2. With σ = 2 − d and any s > d+ σ = 2,
the exponents defined in (53) and (25) become

α1 =

{
1
2 if d1 = d = 4

0 otherwise,

and

β =





0 if d1 < 4
3
2 if d1 = 4
2
d1

if d1 > 4.

Theorem 3. Let M,Q be as above. Then there are constants c1, c2 > 0
such that for all n ∈ N with n ≥ 2,

c1n
−min

“
2

d1
, 1
2

”

(logn)α1 ≤ eran
n (S1,BL∞(Q)) ≤ c2n

−min
“

2
d1

, 1
2

”

(logn)β.

Proof. This is a direct consequence of Theorem 1.

6 Comments

Parts of this paper have already been presented in a talk at the Dagstuhl
Seminar ”Algorithms and Complexity of Continuous Problems” 2000, see
[7].

Kollig and Keller [12] used a one-level splitting like (15) to develop an
algorithm for solving the rendering integral equation providing the global
illumination of scenes in computer graphics. They report good numerical
test results.

We considered only the simplest case of M being a cube. Clearly, the
analysis carries over to finite unions of cubes, to simplices and their finite
unions, and other domains on which suitable approximation tools are avail-
able. In [9] we show that the case of the cube is sufficient to handle general
C∞ domains by introducing local charts.

Although we dealt only with real-valued k and f , the results generalize
in an obvious way to the complex case.

33



The function classes related to f did not possess any smoothness. Classes
of finite smoothness are considered in [9].

The results of section 5 are generalized in [9]. There the information
complexity of general elliptic PDE with smooth coefficients and in smooth
domains is treated.

Let us compare the rates obtained here with those in the deterministic
setting. By simple reduction to integration one can show that under the
assumptions of Theorem 1 there are constants c1, c2 > 0 such that for all
n ∈ N0,

c1 ≤ edet
n (Tk,BL∞(Q)) ≤ c2,

similarly, under the assumptions of Theorem 2 (F = BCs,σ(M,Q) × BL∞(Q)),

c1 ≤ edet
n (S, F ) ≤ c2,

and of Theorem 3,
c1 ≤ edet

n (S1,BL∞(Q)) ≤ c2,

meaning that for the function classes considered here no deterministic algo-
rithm can give a non-trivial convergence rate.
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