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Abstract

The problem of global solution of Fredholm integral equations is stud-
ied. This means that one seeks to approximate the full solution function
(as opposed to the local problem, where only the value of the solution
in a single point or a functional of the solution is sought). The Monte
Carlo complexity is analyzed, i. e. the complexity of stochastic solution of
this problem. The framework for this analysis is provided by information-
based complexity theory. The investigations complement previous ones on
stochastic complexity of local solution and on deterministic complexity of
both local and global solution. The results show that even in the global
case Monte Carlo algorithms can perform better than deterministic ones,
although the difference is not as large as in the local case.

1 Introduction

Monte Carlo methods are a classical tool of solving high dimensional integral
equations. Basic applications include neutron transport (Spanier and Gelbard,
1969, Ermakov, 1971) and thermal radiation (Siegel and Howell, 1992). Here
we consider this problem from a complexity theoretic point of view. We in-
vestigate the minimal possible error among all methods of given cost. Such an
analysis helps to understand the potential power of algorithms of a given class
(e. g. the class of all deterministic or all randomized algorithms), and hence
allows to compare different classes. In particular, it may show for a concrete
numerical problem if randomization can bring advantages over deterministic al-
gorithms or not. A framework, notions and methods for such an analysis are
provided by information-based complexity theory (see Traub, Wasilkowski, and
Woźniakowski, 1988).

In this paper we study the problem of numerical solution of Fredholm integral
equations
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u(s)−
∫

G

k(s, t)u(t)dt = f(s),

with given continuous functions k on G2 and f on G (the details will be given
below). Two subproblems can be distinguished. In the first case we seek to
approximate the full solution function u in some way (e. g. by solving on a
grid and interpolating or by finite element approximation etc.). We call this
the problem of global solution. In the second case we want to approximate the
value u(t0) of the solution in a single point t0 or the value of a functional of u,
e. g. the integral over G. This is called the local solution problem.

While deterministic numerical methods such as Nyström, collocation, FEM
usually aim at solving the global problem, the classical Monte Carlo approach
is directed to the local solution. Monte Carlo methods are well understood in
this situation and are generally acknowledged to bring advantages (at least for
high dimensional problems) over the deterministic approaches. The efficiency
of randomized methods for the global problem is much less understood. Recent
work in this direction is due to Mikhailov (1991a, 1991b, 1995), and Voytishek
(1994, 1996), who proposed and analyzed various algorithms.

The present paper is devoted to the complexity theoretic analysis of ran-
domized solution of the global problem. We consider the global problem for the
model class of smooth kernels and right hand sides and determine the optimal
convergence rates (and thus the complexity). The result complements previous
research of Emelyanov and Ilin (1967) on the deterministic complexity of the
local and global problem and of Heinrich and Mathé (1993) on the Monte Carlo
complexity of the local problem. Our result shows that - as in the local case -
randomized methods are superior also for the global problem, but the difference
between the optimal stochastic and deterministic convergence rate is smaller
than in the local case.

The proof of the lower bound is based on a suitable average case approach,
while the upper bound is shown by presenting and analyzing a concrete algo-
rithm. This algorithm is new and different from the classical ones, and also
from those proposed in Mikhailov (1991a, 1991b, 1995), Voytishek (1994, 1996)
and Heinrich and Mathé (1993), which would not reach the optimal rate. The
algorithm starts with the variance reduction technique of Heinrich and Mathé
(1993), to provide an approximation on a rough grid. To meet the optimal
rate this is, however, not sufficient. Therefore, a new technique is developed -
a multigrid Monte Carlo procedure, which provides updates of the solution on
successively finer grids. Although the algorithm is tuned to the model class, it
is of interest and a topic of future research to extend these ideas to a broader
range of problems.

For all material concerning information-based complexity theory, we refer to
Traub, Wasilkowski, and Woźniakowski (1988), Novak (1988), Heinrich (1994,
1996), Mathé (1994).

The following section 2 contains basic notions, previous development and
the statement of the theorem. The upper bound of the theorem is proved in
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section 3, the lower bound in section 4.

2 Notation and formulation of the result

We study the following numerical problem: Approximate the solution u of a
Fredholm integral equation of the second kind

u(s)−
∫

G

k(s, t)u(t)dt = f(s). (1)

Here G = [0, 1]d denotes the d-dimensional unit cube. We consider this equation
in the space C(G) of continuous functions on G, endowed with the supremum
norm. This is the standard norm we shall be working with, therefore we denote
it simply by ‖ ‖, while all other norms will be distinguished by subscripts. The
given data of the problem, the functions k and f are assumed to belong to sets of
functions of a certain smoothness. To introduce them, let r ∈ IN (IN will always
denote the set of positive integers, and IN0 = IN∪{0}). Let Cr(G) be the space
of r-times continuously differentiable functions endowed with the norm

‖f‖r = max
|α|≤r

‖Dαf‖,

where α = (α1, . . . , αd) is a multi-index and |α| = α1+. . .+αd. Correspondingly
we define Cr(G2) and put X = Cr(G2)⊕Cr(G) (the direct sum, endowed with
the maximum norm). Now we fix parameters κ1, κ3 > 0, 0 < κ2 < 1 (which
will remain fixed throughout the paper), and define

K = {k ∈ Cr(G2) : ‖k‖r ≤ κ1, ‖k‖ ≤ κ2},
F = {f ∈ Cr(G) : ‖f‖r ≤ κ3}

and

X0 = K ×F ⊆ X.

The solution operator S : X0 → C(G) (mapping the data onto the exact solution
of the problem) is defined as

S(k, f) = u = (Id− Tk)−1f.

Here Id denotes the identity operator on C(G) and Tk stands for the integral
operator acting in C(G) as

(Tkg)(s) =
∫

G

k(s, t)g(t)dt
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for g ∈ C(G).
We shall study only this solution operator S, which we call the solution

operator of the global problem, meaning that we seek to approximate the full
solution u of (1) as a function on G. This should be contrasted with the local
solution operator Sχ : X0 → IR studied in Heinrich and Mathé (1993), which is
defined as

Sχ(k, f) =
〈
(Id− Tk)−1f, χ

〉
,

where χ is any fixed continuous linear functional on C(G). In this case, for
example, only the value of the solution in a fixed point or a certain weighted
mean of the solution is sought.

Next we describe the basic setting of information-based complexity theory
(Traub, Wasilkowski, and Woźniakowski, 1988) for this problem. We shall fix
the following class Λ of information functionals (Λ will be a subset of the dual
space X∗):

Λ =
{
δα
(s,t) : α ∈ IN2d

0 , |α| ≤ r, (s, t) ∈ G2
}

∪
{
δβ
t : β ∈ INd

0, |β| ≤ r, t ∈ G
}
,

where

δα
(s,t)(k, f) = Dαk(s, t)

and

δβ
t (k, f) = Dβf(t)

are the corresponding to α and β partial derivatives, taken in the point (s, t)
and t, respectively. Hence, we admit values of functions and their derivatives
as information. A crucial role in complexity theory is played by the informa-
tion operator. It is given by two arbitrary sequences of functions (Li)i∈IN and
(teri)i∈IN,

L1 : X → IR

Li : X × IRi−1 → IR (i > 1)

such that L1 ∈ Λ,

Li( · , a1, . . . , ai−1) ∈ Λ
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for all (a1, . . . , ai−1) ∈ IRi−1 and i > 1, and

teri : IRi → {0, 1} (i ∈ IN).

Put IR∞ = ∪∞i=1 IRi (the disjoint union). Then define N : X0 → IR∞ as follows:
Given x ∈ X0, let a1 = L1(x),

ai = Li(x, a1, . . . , ai−1) (i > 1)

and let n = n(x) be the smallest n ∈ IN with tern(a1, . . . , an) = 1. We shall
assume that n(x) < ∞ for each x ∈ X0. Now we define N : X0 → IR∞ by
setting

N(x) = (a1, . . . , an(x)).

The structure of N reflects the process of collecting information (e. g. calling a
subroutine) during the computation. As defined above, we consider adaptive in-
formation of varying cardinality. For details and background we refer to Traub,
Wasilkowski, and Woźniakowski (1988). It is understood that deterministic ap-
proximations to S will be sought in the form ϕ ◦N , where N is an information
operator as above, and ϕ is an arbitrary mapping ϕ : IR∞ → C(G) (representing
the computations of the algorithm carried out on the set of obtained information
values).

Let N denote the set of all information operators of the above type and Φ
the set of all mappings from IR∞ to C(G). Given N ∈ N , x ∈ X0, we denote

card(N(x)) = n(x),

where n(x) is as defined above.
In this paper we are concerned with the randomized complexity, so determin-

istic approximations will only serve as building blocks of the algorithms. Put in
an abstract setting, this looks as follows: An abstract Monte Carlo method

M = ((Ω,Σ, µ), (Nω, ϕω)ω∈Ω)

consists of a probability space (Ω,Σ, µ), with Ω a nonempty set, Σ a σ-algebra
of subsets of Ω, and µ a (σ-additive) probability measure on Σ, and a fam-
ily (Nω, ϕω) ∈ N × Φ (ω ∈ Ω), such that for each x ∈ X0, ϕω(Nω(x)) and
card(Nω(x)) are Σ measurable functions of ω (the former one as a function into
C(G), endowed with the σ-algebra of Borel sets). Let M be the class of all
such abstract Monte Carlo methods. For background and motivation of this ap-
proach see Traub, Wasilkowski, and Woźniakowski (1988), and Heinrich (1994,
1996). Given M ∈M, the cardinality of M is defined by
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card(M) = sup
x∈X0

∫
Ω

card(Nω(x)) dµ(ω)

(we admit +∞ as a possible value of card(M)). The error of M as a randomized
approximation to S is given by

e(S,M) = sup
x∈X0

∫
Ω

‖S(x)− ϕω(Nω(x)‖ dµ(ω).

The minimal error of all Monte Carlo methods of cardinality not exceeding n is
defined for n ∈ IN as

eMC
n (S) = inf{e(S,M) : M ∈M, card(M) ≤ n}.

This is the crucial quantity of information-based complexity. No randomized
method that uses (on the average) at most n information functionals can provide
a smaller error than eMC

n (S). This is the advantage of the generality of the
approach: Consider a concrete model of randomized computation over the reals,
e. g. the one in Heinrich (1996). Then algorithms on the basis of such a model
are easily seen to be a special case of the abstract notion. Hence lower bounds
proved for eMC

n lead directly to lower bounds for this model (and certainly also
for a variety of other, similar models). But what about upper bounds? Once
eMC
n is determined, the definition says that there are abstract methods which

reach this error. This may be too little for a concrete model of computation.
However, in many situations, including ours here, it is possible to construct
special such algorithms, which do not only meet the abstract criteria, but which
are fully implementable, with a number of arithmetic operations proportional
to the number of information functionals. Hence in these cases the order of the
complexity also in the sense of the above model or in the naive, arithmetic sense
is completely controlled by the numbers eMC

n .
It is the goal of this paper to determine eMC

n for the problem of full solution
of Fredholm integral equations. Before we state the main result, let us recall
previous results for the sake of comparison. First we mention the deterministic
setting, which was investigated by Emelyanov and Ilin (1967). In the statement,
en stands for the minimal deterministic error, see Traub, Wasilkowski, and
Woźniakowski (1988), Novak (1988). (The deterministic minimal error can be
defined as eMC

n , with the difference, that only methods with trivial probability
spaces Ω = {ω0} are admitted). Furthermore, we use the following notation:
an ≺ bn means that there are constants c > 0 and n0 ∈ IN such that for all
n ≥ n0, an ≤ cbn. We write an � bn if an ≺ bn and bn ≺ an. Concerning the
constants appearing throughout this paper let us mention that we often use the
same symbol for possibly different constants.
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Theorem 1 (Emelyanov and Ilin, 1967)

en(S) � sup
χ∈C(G)∗
‖χ‖≤1

en(Sχ) � n−r/(2d).

So in the deterministic setting the global and the local problem are of the
same complexity (up to constants). This is no longer the case in the randomized
setting, as we shall see below. In this setting the local problem was solved as
follows.

Theorem 2 (Heinrich and Mathé, 1993)

sup
χ∈C(G)∗
‖χ‖≤1

eMC
n (Sχ) � n−r/(2d)−1/2.

Note that both theorems were proved for the case of non-adaptive informa-
tion, but the proofs can easily be extended to the case of adaptive information.
Also, only function values were considered there, but the generalization to values
of functions and derivatives is immediate.

In this paper we solve the problem of Monte Carlo complexity of global
solution and prove the following

Theorem 3

(i) If r > d/2, then eMC
n (S) � n−r/(2d)−1/4(log n)1/2.

(ii) If r < d/2, then eMC
n (S) � n−r/d(log n)r/d.

(iii) If r = d/2, then n−1/2(log n)1/2 ≺ eMC
n (S) ≺ n−1/2(log n)3/2.

3 An optimal algorithm and the upper bound

Here we shall develop a Monte Carlo algorithm and show that it reaches the
rate required by the theorem, thus proving the upper bound. We need some
further notation. We set for ` ∈ IN0

I` =
{
(i1, . . . , id) : i1, . . . , id ∈

{
0, . . . , 2` − 1

}}
.

For each i ∈ I` we define mappings in IRd

σ`i(s) = 2−`(i+ s)
τ`i(s) = 2`s− i (s ∈ IRd).
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So σ`i shrinks G to the subcube

G`i = σ`i(G)

and τ`i : G`i → G extends G`i to G. Let π` be the partition of G into these
subcubes (of sidelength 2−`), i. e.

π` = {G`i : i ∈ I`} .

For a function f on IRd define the contraction and the extension operator by

(C`if)(s) = f(τ`i(s))
(E`if)(s) = f(σ`i(s)).

Let Pr(π`) be the space of continuous piecewise polynomial functions of degree
≤ r on the partition π`, i. e. f ∈ Pr(π`) iff f ∈ C(G) and f |G`i

is a polynomial
of (maximum) degree ≤ r for all i ∈ I`. We shall use the following standard
interpolation operators: Let

Γ` =
{
r−12−`(i1, . . . , id) : 0 ≤ i1, . . . , id ≤ r2`

}
be the uniform grid of sidelength r−12−` on G. Let P0 be the d-dimensional
Lagrange interpolation on Γ0 (that is, the tensor product of one-dimensional
Lagrange interpolation operators of order r). Let P` be the composition of
applying P0 to each subcube of the partition π`, i. e.

P` =
∑
i∈I`

C`iP0E`i.

We understand P` as an operator from `∞(Γ`) to Pr(π`) ⊂ C(G). When we
write P`g for g ∈ C(G), we mean P` ((g(t))t∈Γ`

). It is well-known that

‖P` : `∞(Γ`) → C(G)‖ ≤ c (2)

(this notation means the operator norm), and for f ∈ Cr(G)

‖f − P`f‖ ≤ c2−r`‖f‖r. (3)

Let ρ be a Z-valued random variable, where Z is a Banach space. We define
the second moment as IE‖ρ‖2Z and, in case that this is finite,

Var(ρ) = IE‖ρ− IEρ‖2Z .
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To state the next result let us first recall that the type 2 constant T2(Z) of a
Banach space Z is the smallest c with 0 < c ≤ +∞, such that for all n and all
sequences (zi)n

i=1 ⊂ Z,

IE‖
n∑

i=1

εizi‖2 ≤ c2
n∑

i=1

‖zi‖2,

where (εi) denotes a sequence of independent Bernoulli random variables on
some probability space (Ω,Σ, µ), i. e. µ{εi = 1} = µ{εi = −1} = 1

2 (see, e. g.
Ledoux and Talagrand, 1991, ch. 9.2, for this definition).

Lemma 1 a) For each sequence (ρi)m
i=1 of independent Z-valued random vari-

ables of finite second moment

Var

(
m∑

i=1

ρi

)
≤ (2T2(Z))2

m∑
i=1

Var(ρi).

b) There is a constant c > 0 such that for each n,

T2(`n∞) ≤ c(log n)1/2.

Both results are well-known in Banach space theory. Part a) of Lemma 1 is
Proposition 9.11 of Ledoux and Talagrand (1991), part b) is stated in Tomczak-
Jaegermann (1988), p. 16. A proof can be found in Linde and Pietsch (1974),
Lemma 6, or can be obtained directly by combining relations (3.13), (4.8) and
Theorem 4.7 from Ledoux and Talagrand, 1991.

Now we can describe the algorithm. It consists of a deterministic and a
stochastic part. Fix n ∈ IN and let m ∈ IN be such that

22d(m−1) ≤ n < 22dm. (4)

Deterministic part

First we use an algorithm of approximate deterministic solution of equation
(1) with the following property. For each (k, f) ∈ X0 the algorithm provides
an approximation v0 ∈ `∞(Γm) to the true solution (u(s))s∈Γm on the grid Γm.
This is a rough approximation, which will be used to precondition the finer
Monte Carlo approximation.

We define

v = Pmv0 ∈ C(G)
h = (Pm ⊗ Pm)k ∈ C(G2)
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where the tensor product has the canonical meaning of applying Pm with respect
to both s and t to k(s, t). Finally, we set

g = v − Thv.

Since v is piecewise polynomial on πm and h is such on π2
m, the computation of

g can be accomplished explicitly. Observe that we have achieved that v is an
exact solution of the integral equation with kernel h and right hand side g. This
is the key ingredient of the separation of main part in the Monte Carlo scheme
below.

Stochastic part

Fix θ with κ2 < θ < 1 and consider a stationary absorbing Markov chain
on G with density of initial distribution p0(s) ≡ 1 and density of transition
probability p(s, t) ≡ θ. (In other words, the initial and consecutive states are
distributed uniformly on G and absorption occurs with probability 1 − θ.) We
assume that the Markov chain together with a countable number of indepen-
dent copies is defined on some basic probability space (Ω,Σ, µ). Almost all
realizations of the Markov chain are of finite length. Let

ξ = (t0, . . . , tq) (5)

be such a realization. First we define a random variable ηm(s, ξ) for s ∈ Γm by
setting

ηm(s, ξ) = (1− θ)−1θ−q[k(s, tq)k(tq, tq−1) . . . k(t1, t0)f(t0)
−h(s, tq)h(tq, tq−1) . . . h(t1, t0)g(t0)]. (6)

This is the absorption estimate in the von Neumann - Ulam scheme (see, e. g.,
Ermakov, 1971), with the variance reduction by separation of the main part
as suggested in Heinrich and Mathé (1993). We define a vector-valued random
variable by setting

ηm(ξ) = (ηm(s, ξ))s∈Γm ∈ `∞(Γm).

This exhausts the approach of Heinrich and Mathé (1993) - but is not yet
sufficient for our purposes. We need approximations of the solution on grids
finer than Γm. This will be accomplished by a multilevel updating procedure.
For this purpose we choose the final level m∗ > m.

Fix ` with m < ` ≤ m∗, and set

h`( · , t) = k( · , t)− P`−1k( · , t), (7)
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and for s ∈ Γ`,

η`(s, ξ) = (1− θ)−1θ−qh`(s, tq)k(tq, tq−1) . . . k(t1, t0)f(t0). (8)

Now put

η`(ξ) = (η`(s, ξ))s∈Γ`
∈ `∞(Γ`).

Next choose a natural number q` for each ` with m ≤ ` ≤ m∗. Let ξi` (i =
1, · · · , q`, ` = m, . . . ,m∗) be independent realizations of the Markov chain. For
each `, we set

ζ` =
1
q`

q∑̀
i=1

η`(ξi`). (9)

Observe that ζ` is an `∞(Γ`) valued random variable. The final approximation
to u is computed from the variables above by interpolation:

ζ = v − g + Pm∗f +
m∗∑

`=m

P`ζ`. (10)

Hence ζ is a piecewise polynomial function from Pr(πm∗), the coefficients of
the polynomial pieces being random. This accomplishes the description of the
algorithm.

In the sequel we analyze the algorithm and specify the so far undefined
parameters so as to suit the smoothness class under consideration. In the de-
terministic part we choose the approximation in such a way that

‖u|Γm − v0‖`∞(Γm) ≤ c22−rm, (11)

where c1, c2 > 0 do not depend on k, f and m.

In a way analogous to (3) we have

‖k − h‖ ≤ c2−rm. (12)

Relations (2), (3), (11), and (12) imply

‖f − g‖ ≤ c2−rm. (13)
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Fix a κ′2 with κ2 < κ′2 < θ. By (12), there is an m0 such that for m ≥ m0

and for all k ∈ K the resulting h satisfies ‖h‖ ≤ κ′2. Then it can be checked as
in Heinrich and Mathé (1993), that

IEηm(s, ξ) = (Tku)(s)− (Thv)(s) = (Tku)(s)− v(s) + g(s) (14)

and, using (12) and (13),

|ηm(s, ξ)| ≤ c2−rm (15)

(the constant being independent of m, k, f, ξ, and s).

In a similar way one verifies that for all ` > m,

IEη`(s, ξ) =
∫

G

h`(s, t)u(t) dt = (Tku)(s)− (P`−1Tku)(s), (16)

and, in view of (7) and (3)

|η`(s, ξ)| ≤ c2−r`. (17)

We define

m∗ = dm(1 + d/(2r)e. (18)

if r ≥ d/2 and

m∗ = 2m− p, (19)

p = [(log2m)/d] (20)

if r < d/2. (Here dae and [a] have the usual meaning of the smallest integer ≥ a
and the largest integer ≤ a, respectively.) Note that m < m∗ ≤ 2m.

For ` = m,m+ 1, . . . ,m∗ we set

q` = d2dm−(r+d/2)(`−m)e (21)

if r ≥ d/2, and

q` = d2d(2m−`)−(d/2−r)(2m−`−p)e (22)
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if r < d/2.

In view of (14) and (16) we have

IEζ = v − g + Pm∗f + PmTku− v + g +
m∗∑

`=m+1

(P`Tku− P`−1Tku)

= Pm∗f + Pm∗Tku = Pm∗u. (23)

Hence we have a biased random approximation. In the sequel we estimate the
precision of the approximation

IE‖ζ − u‖ ≤ IE‖ζ − Pm∗u‖+ ‖Pm∗u− u‖. (24)

By (3) (and the standard conclusion about the smoothness of u for (k, f) ∈ X0)
we have

‖u− Pm∗u‖ ≤ c2−rm∗
. (25)

Moreover, by Hölder’s inequality and (23)

(IE‖ζ − Pm∗u‖)2 ≤ IE‖ζ − Pm∗u‖2 = IE‖ζ − IEζ‖2

= IE

∥∥∥∥∥
m∗∑

`=m

(P`ζ` − IEP`ζ`)

∥∥∥∥∥
2

. (26)

Define the restriction operator

Rm∗ : C(G) → `∞(Γm∗)

by

Rm∗f = f |Γm∗

for f ∈ C(G). Then clearly

Pm∗Rm∗P` = P`

for ` ≤ m∗. Using this, we continue (26) as

= IE

∥∥∥∥∥
m∗∑

`=m

(Pm∗Rm∗P`ζ` − IEPm∗Rm∗P`ζ`)

∥∥∥∥∥
2
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= IE

∥∥∥∥∥Pm∗

m∗∑
`=m

(Rm∗P`ζ` − IERm∗P`ζ`)

∥∥∥∥∥
2

≤ c IE

∥∥∥∥∥
m∗∑

`=m

(Rm∗P`ζ` − IERm∗P`ζ`)

∥∥∥∥∥
2

`∞(Γm∗ )

= c Var

(
m∗∑

`=m

Rm∗P`ζ`

)

= c Var

(
m∗∑

`=m

q−1
`

q∑̀
i=1

Rm∗P`η`(ξi`)

)

≤ cm∗
m∗∑

`=m

q−2
`

q∑̀
i=1

Var(Rm∗P`η`(ξi`))

≤ cm

m∗∑
`=m

q−2
`

q∑̀
i=1

Var(η`(ξi`))

= cm

m∗∑
`=m

q−1
` Var(η`), (27)

where we used Lemma 1. In the sequel we distinguish between three cases
r > d/2, r = d/2 and r < d/2. In the first case we use (15), (17), and (21) to
continue (27) as follows:

≤ cm

m∗∑
`=m

2−dm+(r+d/2)(`−m)−2r`

≤ cm

m∗∑
`=m

2−(2r+d)m−(r−d/2)(`−m)

≤ cm2−(2r+d)m. (28)

Combining (18), (24) - (28), and (4), we obtain the desired estimate

IE‖ζ − u‖ ≤ cm1/22−rm−dm/2

≤ c(log n)1/2n−r/(2d)−1/4.

If r = d/2, we argue in the same way, with the exception that, due to the
summation of inequality (28), another factor m appears, which results in

IE‖ζ − u‖ ≤ cn−1/2 log n. (29)

Finally, if r < d/2, we use (15), (17), and (22) and continue (27) as
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≤ cm

m∗∑
`=m

2−d(2m−`)+(d/2−r)(2m−`−p)−2r`

= cm

m∗∑
`=m

2−d(2m−`−p)−dp+(d/2−r)(2m−`−p)+2r(2m−`−p)−2r(2m−p)

= cm

m∗∑
`=m

2−dp−2r(2m−p)−(d/2−r)(2m−`−p)

≤ cm2−dp−2r(2m−p)

≤ c2−2r(2m−p). (30)

The last two inequalities were consequences of (19) and (20). We combine (19),
(20), (24 – 27), (30), and (4) and get

IE‖ζ − u‖ ≤ c2−r(2m−p)

≤ c(log n)r/dn−r/d.

To complete the proof of the upper bound of the theorem, we have to estimate
the cardinality of the method, i. e. the expected number of function values. We
shall, in addition, estimate the number of arithmetic operations, thus giving a
complete analysis of the complexity also in the sense of Heinrich (1996).

It is known from Emelyanov and Ilin (1967) that the algorithm of determin-
istic computation of v0 can be chosen in such a way that it requires O(22md)
function values and arithmetic operations.

The same is true for the computation of v, h and g. The expected length of
the random walk (5) is easily seen to be finite. Hence the expected number of
function values and operations to compute (6) for one random walk ξ and for
all s ∈ Γm is O(2dm). To compute (8) for one walk ξ and for all s ∈ Γ` we first
compute the piecewise polynomial function

P`−1k( · , tq) ∈ Pr(π`−1)

from the kernel values k(s, tq) (s ∈ Γ`−1) in O(2d`) operations and then

h(s, tq) = k(s, tq)− (P`−1k( · , tq))(s)

for all s ∈ Γ`, again in O(2d`) operations. Multiplying this with the number of
samples q` in level `, we obtain the cost of computing the vector ζ` ∈ `∞(Γ`) for
` = m, . . . ,m∗. The final approximation (10) involves a summation of piecewise
polynomial functions on πm, πm+1, . . . , πm∗ . It is easily seen that this can be
accomplished in
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O(2dm + . . .+ 2dm∗
) = O(2dm∗

)

operations. Note also that we need O(
∑m∗

`=m q`), that is, not more than O(2dm)
calls of a standard random number generator providing independent uniformly
distributed on [0, 1] samples. So the overall expected number n̄ of function
values and arithmetic operations for the stochastic part satisfies

n̄ ≤ c

m∗∑
`=m

q`2d`.

In the case r > d/2, we obtain from (21)

n̄ ≤ c

m∗∑
`=m

2dm−(r+d/2)(`−m)+d`

= c

m∗∑
`=m

22dm+d(`−m)−(r+d/2)(`−m)

= c

m∗∑
`=m

22dm−(r−d/2)(`−m)

≤ c22dm ≤ cn.

In the case r = d/2, the argument is the same, but the summation gives

n̄ ≤ cm22dm ≤ cn log n. (31)

Finally, for r < d/2, we get from (19) and (22)

n̄ ≤
m∗∑

`=m

2d(2m−`)−(d/2−r)(2m−`−p)+d`

= c

m∗∑
`=m

22dm−(d/2−r)(2m−`−p)

≤ c22dm ≤ cn.

This obviously proves the upper bound of the theorem in the cases r 6= d/2.
For r = d/2, we put ñ = ndlog ne and obtain from (31) and (29) that our
method needs an expected number of O(ñ) operations and function values and
has expected error

≤ cn−1/2 log n ≤ cñ−1/2(log ñ)3/2,

yielding the upper bound also for r = d/2.
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4 The lower bound

In this chapter we prove the lower estimate of the theorem. The general ap-
proach to such estimates consists in the reduction to the average case, a pro-
cedure first applied by Bakhvalov (1959). We shall consider only probability
measures of finite (discrete) support, hence no measurability questions arise. So
let ν be such a measure on X0, let N ∈ N , ϕ ∈ Φ. Put

cardavg(N, ν) =
∫

X0

card(N(x)) dν(x),

eavg(S,N, ϕ, ν) =
∫

X0

‖S(x)− ϕ(N(x))‖ dν(x),

eavg
n (S, ν) = inf{eavg(S,N, ϕ, ν) : cardavg(N) ≤ n, ϕ ∈ Φ}.

Lemma 2 For each probability measure ν on X0 of finite support and each
n ∈ IN,

eMC
n (S) ≥ 1

2
eavg
2n (S, ν).

Proof: Let M = ((Ω,Σ, µ), (Nω, ϕω)ω∈Ω) be a Monte Carlo method with
card(M) ≤ n. Hence

n ≥ sup
x∈X0

∫
Ω

card(Nω(x)) dµ(ω)

≥
∫

X0

∫
Ω

card(Nω(x)) dµ(ω) dν(x)

=
∫

Ω

∫
X0

card(Nω(x)) dν(x) dµ(ω)

=
∫

Ω

cardavg(Nω, ν) dµ(ω).

We set

Ω0 = {ω ∈ Ω : cardavg(Nω, ν) ≤ 2n}.

The inequalities above imply µ(Ω0) ≥ 1/2. Now we have

e(S,M) = sup
x∈X0

∫
Ω

‖S(x)− ϕω(Nω(x))‖ dµ(ω)

≥
∫

X0

∫
Ω

‖S(x)− ϕω(Nω(x))‖ dµ(ω) dν(x)
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=
∫

Ω

∫
X0

‖S(x)− ϕω(Nω(x))‖ dν(x) dµ(ω)

=
∫

Ω

eavg(S,Nω, ϕω, ν) dµ(ω)

≥ µ(Ω0) inf
ω∈Ω0

eavg(S,Nω, ϕω, ν)

≥ 1
2
eavg
2n (S, ν).

This proves the lemma.

Next let n ∈ IN, and let εij (i, j = 1, . . . , n) be independent Bernoulli random
variables. We shall use the following result.

Lemma 3 For n ∈ IN,

IE max
1≤i≤n

∣∣∣∣∣∣
n∑

j=1

εij

∣∣∣∣∣∣ � (n log n)1/2

and for m,n ∈ IN with 2m−1 ≤ n,

IE max
1≤i≤n

∣∣∣∣∣∣
m∑

j=1

εij

∣∣∣∣∣∣ � m.

Proof: The upper bounds follow from Lemma 1 above. The lower bound in
the first relation is proved in Ledoux and Talagrand (1991), p. 120. The lower
bound in the second relation follows from

µ

 max
1≤i≤n

∣∣∣∣∣∣
m∑

j=1

εij

∣∣∣∣∣∣ < m

 ≤ (1− 2−(m−1))n

≤ (1− 2−(m−1))2
m−1

< e−1.

This proves Lemma 3.

We shall construct a measure ν on X0 and estimate eavg
n (S, ν). For this

purpose, fix n ∈ IN and choose m ∈ IN such that

22d(m−1)−2 < 4n ≤ 22dm−2. (32)

Put p = m if r ≥ d/2 and p = [(log2m)/d]+ 1 if r < d/2. Note that 1 ≤ p ≤ m.
Let
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I ′2m−p = {(i1, . . . , id) ∈ I2m−p : 0 ≤ i1 < 22m−p−1}
I ′′p = {(i1, . . . , id) ∈ Ip : 2p−1 ≤ i1 < 2p},
D = I ′2m−p × I ′′p .

Then

|D| = 22dm−2. (33)

Let ψ0 be a C∞ function on IR with supp(ψ0) ⊆ (0, 1) and

∫
IR
ψ0(s)ds = 1. (34)

Put

ψ(s1, . . . , sd) =
d∏

`=1

ψ0(s`).

Define

ψ2m−p,i(s) = ψ(τ2m−p,i(s)) (i ∈ I ′2m−p)
ψp,j(t) = ψ(τp,j(t)) (j ∈ I ′′p )

k̃ij(s, t) = ψ2m−p,i(s)ψp,j(t)

and

kij(s, t) = min(κ1, κ2)‖k̃ij‖−1
r k̃ij(s, t).

It is easily checked that kij ∈ K,

supp(kij) ⊆ G0
2m−p,i ×G0

p,j , (35)

where A0 denotes the interior of a set A, and

‖k̃ij‖r ≤ c2r(2m−p) (36)

for (i, j) ∈ I ′2m−p × I ′′p = D. Now we are ready to define the measure ν. Let
εij ((i, j) ∈ D) be independent Bernoulli variables on some probability space

19



(Ω,Σ, µ). Let f0 be the function on G with f0 ≡ κ3. Hence f0 ∈ F . Define a
K-valued discrete random variable h on (Ω,Σ, µ) by setting

h(ω) =
∑

(i,j)∈D

εij(ω)kij

and an X0-valued variable by

z(ω) = (h(ω), f0).

We set ν = µ ◦ z−1, so ν is a probability measure on X0 with finite support X1,
where X1 = K1 × {f0},

K1 =

 ∑
(i,j)∈D

βijkij : βij = ±1

 .

Observe that for all k ∈ K1,

supp(k) ⊆ G′ ×G′′, (37)

with

G′ = {(s1, . . . , sd) ∈ G : 0 ≤ s1 ≤ 1/2}

and

G′′ = {(s1, . . . , sd) ∈ G : 1/2 ≤ s1 ≤ 1}.

It follows from (37) that T 2
k = 0 and hence

S(k, f) = (Id− Tk)−1f = (Id+ Tk)f = f + Tkf. (38)

We shall use this relation later on. Now we estimate eavg
n (S, ν) form below. For

this sake, we let N ∈ N with

cardavg(N, ν) ≤ n, (39)

and ϕ ∈ Φ. We shall bound eavg(S,N, ϕ, ν) from below. Define

X2 = {x ∈ X1 : card(N(x)) ≤ 2n}.
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From (39) we infer

n ≥
∫

X1\X2

card(N(x))dν(x) ≥ 2nν(X1\X2),

and consequently,

ν(X2) ≥ 1/2. (40)

Put N(X1) = A1, N(X2) = A2. Then we get

µ{N(z) ∈ A2} ≥ 1/2. (41)

We have

∫
X0

‖S(x)− ϕ(N(x))‖dν(x) = IE‖S(z)− ϕ(N(z))‖

=
∑

a∈A1

IE(‖S(z)− ϕ(N(z))‖ | N(z) = a)µ{N(z) = a}

≥
∑

a∈A2

IE(‖S(z)− ϕ(N(z))‖ | N(z) = a)µ{N(z) = a}, (42)

where the conditional expectation is just the expectation of ‖S(z) − ϕ(N(z))‖
with respect to the conditional measure (µ|{N(z) = a}). Next we fix a ∈ A2,
a = (a1, . . . , an(a)). By the definition of A2 and X2, n(a) ≤ 2n. Let

t1

t2 = t2(a1)
· · ·

tn(a) = tn(a)(a1, . . . , an(a)−1)

be the support points (in G2 ∪G) of information N produced for those x ∈ X
with N(x) = a (recall the we admit only information consisting of function and
derivative values). Define

Da = {(i, j) ∈ D : kij(tq) = 0 for all q ∈ {1, . . . , n(a)} with tq ∈ G2}, (43)

D′
a = D\Da.

It follows from the above, from (32) and (33) that
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|Da| ≥ |D| − 2n ≥ |D|/2 = 22dm−3. (44)

Put

ha(ω) =
∑

(i,j)∈Da

εij(ω)kij ,

h′a(ω) =
∑

(i,j)∈D′
a

εij(ω)kij .

Observe that for all ω ∈ Ω with N(z(ω)) = a,

N(ha(ω) + h′a(ω), f0) = N(−ha(ω) + h′a(ω), f0)
= N(h′a(ω), f0),

because of (43), and that −ha(ω)+h′a(ω) has the same conditional distribution
with respect to {N(z) = a} as ha(ω) + h′a(ω). Hence

IE(‖S(z)− ϕ(N(z))‖ | N(z) = a)
= IE(‖S(ha + h′a, f0)− ϕ(N(ha + h′a, f0))‖ | N(h, f0) = a)
= IE(‖S(ha + h′a, f0)− ϕ(N(h′a, f0))‖ | N(h′a, f0) = a)
= IE(‖S(−ha + h′a, f0)− ϕ(N(h′a, f0))‖ | N(h′a, f0) = a)

≥ 1
2
IE(‖S(ha + h′a, f0)− S(−ha + h′a, f0)‖ | N(h′a, f0) = a)

and in view of (38)

=
1
2
IE(‖Tha+h′af0 − T(−ha+h′a)f0‖ | N(h′a, f0) = a)

= IE(‖Thaf0‖ | N(h′a, f0) = a)
= IE‖Thaf0‖, (45)

because of the independence of ha and h′a.
In view of (34), (35) and (36) we can continue relation (45) above as follows:

= κ3 IE max
s∈G

∣∣∣∣∣∣
∑

(i,j)∈Da

εij

∫
G

kij(s, t) dt

∣∣∣∣∣∣
= κ3 min(κ1, κ2)‖k̃ij‖−1

r IE max
s∈G

∣∣∣∣∣∣
∑

(i,j)∈Da

εijψ2m−p,i(s)
∫

G

ψp,j(t) dt

∣∣∣∣∣∣
≥ c2−r(2m−p)−dp IE max

i∈I′2m−p

∣∣∣∣∣∣
∑

j:(i,j)∈Da

εij

∣∣∣∣∣∣ . (46)
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Denote q1 = 2d(2m−p)−3 and q2 = 2dp−3. Without loss of generality we can
assume n to be so large that q1 and q2 are integers. Furthermore, we set

Da,i = {j : (i, j) ∈ Da}.

Then

|{i : |Da,i| ≥ q2}| ≥ q1. (47)

To show this, we assume the contrary. Hence

|Da| =
∑

i∈I′2m−p

|Da,i|

=
∑

i:|Da,i|≥q2

|Da,i|+
∑

i:|Da,i|<q2

|Da,i|

< q12dp−1 + 2d(2m−p)−1q2 = 22dm−3,

contradicting (44), which proves (47).
Observe that the independence of the Bernoulli variables εij implies

IE max
i

∣∣∣∣∣∣
∑

j:(i,j)∈Da

εij

∣∣∣∣∣∣ ≥ IE max
i

∣∣∣∣∣∣
∑

j:(i,j)∈B

εij

∣∣∣∣∣∣
for any subset B ⊂ Da. This together with (47) implies

IE max
i

∣∣∣∣∣∣
∑

j:(i,j)∈Da

εij

∣∣∣∣∣∣ ≥ IE max
1≤i≤q1

∣∣∣∣∣∣
q2∑

j=1

εij

∣∣∣∣∣∣ , (48)

where εij , i = 1, . . . , q1, j = 1, . . . , q2 are new independent Bernoulli variables.
If r ≥ d/2 and hence p = m, q1 = q2 = 2dm−3, Lemma 3 gives

IE max
1≤i≤q1

∣∣∣∣∣∣
q2∑

j=1

εij

∣∣∣∣∣∣ ≥ cm1/22dm/2. (49)

In this case we can continue (46) by the help of (48) and (49) as follows:

≥ cm1/22−rm−dm/2 ≥ c(log n)1/2n−r/(2d)−1/4. (50)
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Relations (45), (46), (50) together with (41) and (42) prove the lower bound
in the case r ≥ d/2. Now we assume r < d/2. Then q1 = 2d(2m−p)−3 and
q2 = 2dp−3, with p = [(log2m)/d] + 1. Put q′2 = min(q2, d(2m − p) − 2). Then
2q′2−1 ≤ q1, and Lemma 3 gives

IE max
1≤i≤q1

∣∣∣∣∣∣
q2∑

j=1

εij

∣∣∣∣∣∣ ≥ IE max
1≤i≤q1

∣∣∣∣∣∣
q′2∑

j=1

εij

∣∣∣∣∣∣ ≥ cq′2. (51)

Using (48) and (51), we continue (46) in the following way

≥ cq′22
−r(2m−p)−dp

≥ cm2−2rm+(r/d) log2 m−log2 m

≥ cmr/d2−2rm ≥ c(log n)r/dn−r/d. (52)

Now relations (41), (42), (45), (46), and (52) imply the lower bound. This
completes the proof of the theorem.
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