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Abstract

Approximation properties of the underlying estimator are used to
improve the efficiency of the method of dependent tests. A multilevel
approximation procedure is developed such that in each level the num-
ber of samples is balanced with the level-dependent variance, resulting
in a considerable reduction of the overall computational cost. The
new technique is applied to the Monte Carlo estimation of integrals
depending on a parameter.

1 Introduction

The method of dependent tests is a basic way of using Monte Carlo esti-
mates for the approximation of whole functions (as opposed to the approx-
imation of a single function value or a weighted integral as in the classical
Monte Carlo approach). The method was developed and studied by Frolov
and Chentsov (1962), Sobol (1962, 1973), Ermakov and Mikhailov (1982),
Mikhailov (1991), Voytishek (1996, 1997), Prigarin (1995), and others. The
aim of the present paper is to propose a multilevel version of this method,
based on the ideas developed in Heinrich (1998a). We exploit the approxima-
bility of the underlying estimator to decompose it into levels. The number of
samples used for each level can be tuned to the variance of the contribution
from this level, so that an overall reduction of computational cost is reached.
The new method is presented in a general framework, and later on studied
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in detail for the computation of integrals depending on a parameter. While
Heinrich (1998a) and Heinrich and Sindambiwe (1999) consider the class Cr

of r-times continuously differentiable functions on the unit cube and provide,
besides the algorithm, also a complexity analysis including lower bounds, in
this paper we mostly concentrate on the study of the algorithm and give a
more general convergence analysis. We consider arbitrary domains instead
of the cube and relaxed smoothness assumptions requiring the function to
be in a Sobolev class W r

p with 1 < p < ∞, and this only with respect to the
parameter variable. We study the expected norm error in Lp for 1 < p < ∞
and we are able to give quantitative results on the convergence. This is new
even for the standard, one-level method of dependent tests. For that one,
such an approach has so far only been carried out for Hilbert spaces, see, e.g.,
Mikhailov (1991), Voytishek (1996), Prigarin (1995). For Lp spaces (p > 2)
only asymptotic results were obtained on the basis of weak convergence,
with no information on the speed of convergence (to the Gaussian limit),
see, e.g., Frolov and Chentsov (1962), Ermakov and Mikhailov (1982), Pri-
garin (1995), Voytishek (1997). Finally, the case 1 < p < 2 is often left out
because the usual tools do not work — the involved functions have infinite
variance. We are able to study this case too and determine the convergence
rates for both one- and multilevel methods. In the end, a few remarks on
lower bounds and a comparison between one- and multilevel methods are
made. The present paper is an extended version of a note which appeared
in the abstract volume of this conference (see Heinrich, 1998b). A multi-
level approach with the possibility of independent sampling is developed in
Heinrich (1998c).

2 The Standard Method of Dependent Tests

Let X be a Banach space. A random variable with values in X is a Borel
measurable mapping η : Ω → X on some probability space (Ω,Σ, µ) such
that the values of η are almost surely contained in a separable subspace of
X. For 1 ≤ p < ∞ we denote by Lp(X) = Lp(Ω,Σ, µ,X) the space of all
X-valued random variables η on (Ω,Σ, µ) satisfying

IE‖η‖p =
∫
Ω
‖η(ω)‖p dµ(ω) < ∞

(see Ledoux and Talagrand, 1991, for details).

2



Now let η ∈ Lp(X) for some p with 1 ≤ p < ∞. We seek to approximate
the expectation

u = IEη ∈ X.

Usually, X is an infinite dimensional function space, which makes it, in
general, impossible to compute u itself. Instead, an estimate for Pu is
constructed, where P is some continuous linear finite rank operator (an
interpolation or approximation operator, for example), acting from X to
another Banach space Y (as a rule, either X itself or a larger function space,
compare section 4). We shall assume that X is continuously embedded into
Y , that is, there is a continuous injection J : X → Y . In the sequel we shall
identify X with J(X) ⊆ Y as sets. The norms will be distinguished by ‖‖X

and ‖‖Y . Let

Px =
n∑

i=1

〈x, x∗i 〉 yi (x ∈ X) (1)

be a representation of P , where x∗i ∈ X∗ (the dual of X) and yi ∈ Y . The
standard method of dependent tests consists of the estimate

Pu ≈ θ =
1
N

N∑
j=1

Pηj , (2)

where (ηj)N
j=1 are independent realizations of η. (We assume that all random

variables considered in this paper are defined on the same basic probability
space (Ω,Σ, µ).) Combined with (1), this gives

n∑
i=1

〈u, x∗i 〉 yi ≈ θ =
n∑

i=1

 1
N

N∑
j=1

〈ηj , x
∗
i 〉

 yi (3)

(which makes it clear that we use the same N samples for the estimation
of the whole family of functionals 〈u, x∗i 〉). As an illustration, we consider
integrals depending on a parameter, which will be studied in detail later
on. For the moment we do this on an informal level — precise assumptions
follow in section 4.

Let G1 ⊂ IRd1 , G2 ⊂ IRd2 and f be a function on G1 × G2. We want to
approximate

u(s) =
∫

G2

f(s, t) dt
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as a function of the parameter s ∈ G1. Let X and Y with X ⊆ Y be some
spaces of functions on G1 and let P be an operator acting on g ∈ X as

(Pg)(s) =
n∑

i=1

g(si)ϕi(s)

(one can think, e.g., of piecewise linear interpolation). Let ξ be a uniformly
distributed on G2 random variable. We set

η(ω) = |G2|f( · , ξ(ω)).

Then

IEη =
∫

G2

f( · , t) dt = u.

Now the method of dependent tests approximates

Pu ≈
n∑

i=1

 |G2|
N

N∑
j=1

f(si, ξj)

ϕi

with (ξj)N
j=1 being independent realizations of ξ.

3 The Multilevel Approach

Assume that we are given a sequence of continuous linear finite rank oper-
ators (P`)m

`=1 from X to Y with Pm = P instead of P alone (usually, the
approximation operators P belong to such scales in a natural way). Let

P`x =
n∑̀
i=1

〈x, x∗`i〉 y`i (x ∈ X)

(` = 1, . . . ,m) be the respective representations. Choose positive integers
(N`)m

`=1 and estimate

Pmu =
m∑

`=1

(P` − P`−1)u (4)
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(with P0 = 0) by

ζ =
m∑

`=1

1
N`

N∑̀
j=1

(P` − P`−1)η`j (5)

=
m∑

`=1

 n∑̀
i=1

 1
N`

N∑̀
j=1

〈η`j , x
∗
`i〉

 y`i −
n`−1∑
i=1

 1
N`

N∑̀
j=1

〈
η`j , x

∗
`−1,i

〉 y`−1,i


where (η`j : j = 1, . . . , N`, ` = 1, . . . ,m) are independent realizations of
η. We set n0 = 0, so for ` = 1 the second term of the last line of (5) is
to be understood as zero. Observe that the standard (one-level) method
corresponds to the case m = 1 and N1 = N . For parametric integration
the concrete form of (5) is given later on — see relation (15). Now we shall
analyze the error. For 1 ≤ p < ∞ we define the p-th expected norm error of
the estimate ζ as

ep(ζ) = (IE‖u− ζ‖p
Y )1/p.

By the triangle inequality, ep(ζ) can be bounded by a deterministic and a
stochastic component:

ep(ζ) = (IE‖u− Pmu + Pmu− ζ‖p
Y )1/p

≤ ‖u− Pmu‖Y + (IE‖Pmu− ζ‖p
Y )1/p. (6)

Next we shall give an upper bound for the stochastic component. For this
purpose we let 1 ≤ p ≤ 2 and recall that a Banach space Z is said to be of
type p if there is a constant c > 0 such that for all n ∈ IN and (zi)n

i=1 ⊂ Z,

(IE‖
n∑

i=1

εizi‖p)1/p ≤ c

(
n∑

i=1

‖zi‖p

)1/p

, (7)

where (εi)n
i=1 is a sequence of independent Bernoulli variables with

µ{εi = 1} = µ{εi = −1} = 1
2 . We refer to ch. 9.2 of Ledoux and Ta-

lagrand (1991) for this definition and background. The smallest possible
constant in (7) is called the type p constant of Z, denoted by Tp(Z). Let
us mention that every Banach space is of type 1 (triangle inequality), and
that type p implies type q for 1 ≤ q < p. Each finite dimensional space is of
type 2, and for 1 ≤ p < ∞ the spaces Lp(ν) (with ν an arbitrary measure)
are of type min(p, 2). Clearly, all subspaces U of a type p space Z are of
type p themselves, with Tp(U) ≤ Tp(Z). Now we can present a bound of the
stochastic part of the error.
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Proposition 1 Let 1 < p ≤ 2 and assume η ∈ Lp(X). Then

(IE‖Pmu− ζ‖p
Y )1/p ≤ 2Tp(Ym)

(
m∑

`=1

N1−p
` IE‖(P` − P`−1)(u− η)‖p

Y

)1/p

,

where Ym = span (
⋃m

`=1 P`(X)) ⊂ Y .

Proof. By (4) and the first part of (5) we have

Pmu− ζ =
m∑

`=1

1
N`

N∑̀
j=1

(P` − P`−1)(u− η`j). (8)

Now put

ρ`j = N−1
` (P` − P`−1)(u− η`j)

(` = 1, . . . ,m, j = 1, . . . , N`). These are independent Ym-valued mean zero
random variables with finite p-th moment

IE‖ρ`j‖p
Y = N−p

` IE‖(P` − P`−1)(u− η)‖p
Y . (9)

Proposition 9.11 of Ledoux and Talagrand (1991) states that

IE‖
m∑

`=1

N∑̀
j=1

ρ`j‖p
Y ≤ (2Tp(Ym))p

m∑
`=1

N∑̀
j=1

IE‖ρ`j‖p
Y .

Combining this with (8) and (9) yields the result.

Corollary 2 Let 1 < p ≤ 2 and assume that η ∈ Lp(X). Then

(IE‖Pmu− ζ‖p
Y )1/p ≤ 2Tp(Ym)(IE‖u− η‖p

X

m∑
`=1

N1−p
` ‖P` − P`−1 : X → Y ‖p)1/p.

Proof. This follows directly from

IE‖(P` − P`−1)(u− η)‖p
Y ≤ ‖P` − P`−1 : X → Y ‖p IE‖u− η‖p

X .
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4 Integrals Depending on a Parameter

Let d1 and d2 be positive integers and G1 ⊂ IRd1 and G2 ⊂ IRd2 be bounded
open sets with Lipschitz boundary. Let 1 ≤ q < ∞, let r be a positive
integer with r/d1 > 1/q, and let W q,0

r (G1 × G2) be the space of all f ∈
Lq(G1 × G2) such that for each multiindex α = (α1, . . . , αd1) with |α| =
α1 + . . . + αd1 ≤ r the generalized derivative Dα

1 f with respect to the G1

coordinates exists and belongs to Lq(G1 × G2). Hence, somewhat loosely
speaking, we consider functions f(s, t) with smoothness W r

q (G1) in the first
variable s ∈ G1 and summability Lq(G2) in the second variable t ∈ G2. The
norm on W r,0

q (G1 ×G2) is defined as

‖f‖
W r,0

q
=

∑
|α|≤r

‖Dα
1 f‖q

Lq(G1×G2)

1/q

.

(For all notation concerning Sobolev spaces we refer to Adams, 1975). We
study the estimation of

u(s) =
∫

G2

f(s, t) dt (10)

in Lq(G1), that is, integration over G2 with parameter domain G1 and the
error measured in the norm of Lq(G1). To put this into the framework of
sections 2 and 3 we set X = W r

q (G1), Y = Lq(G1) and p = min(2, q). We
let ξ = ξ(ω) be a uniformly distributed on G2 random variable on (Ω,Σ, µ)
and we define η = η(ω) by

η : ω → |G2|f( · , ξ(ω)).

Lemma 3 The function η is a random variable with values in X = W r
q (G1),

belongs to Lq(X), IEη = u and

(IE‖η‖q
X)1/q ≤ ‖f‖

W r,0
q

. (11)

Proof. We first verify that the values of η almost surely belong to W r
q (G1)

and that η is Borel measurable as a mapping into W r
q (G1) (note that W r

q (G1)
is a separable Banach space). Let us denote by ft the function given by
ft(s) = f(s, t). Then ft ∈ Lq(G1) for almost all t, by Fubini’s theorem.
Using elementary facts from distribution theory, it is readily checked that
for all α with |α| ≤ r the weak derivative (Dα

1 f)( · , t) coincides with Dαft

for almost all t. This implies ft ∈ W r
q (G1) for almost all t. Moreover, since
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W r
q (G1) is isometric to the subspace of ⊕q

∑
|α|≤r Lq(G1) of those (fα)|α|≤r

with fα = Dαf0, we can use 6.2.12 of Pietsch (1987) to prove that t →
(Dαft)|α|≤r is Borel measurable as a mapping into the direct sum above,
and hence t → ft is Borel measurable as a mapping into W r

q (G1). We have

(IE‖η‖q
X)1/q =

(∫
G2

‖ft‖q
W r

q (G1) dt

)1/q

= ‖f‖
W r,0

q
≤ 1.

It follows that IEη is well-defined, and because of (10), equals u.

Now we have to define suitable approximation tools in W r
q (G1). There

is a vast literature on this subject and a variety of possibilities. Since a
review of these tools is not the subject of this paper, we restrict ourselves
to formulating the requirements on the approximating operators needed for
our purposes and make a few comments on how to satisfy them. Let P` :
W r

q (G1) → Lq(G1) (` = 1, 2 . . .) be a sequence of operators of the form

P`f =
n∑̀
i=1

f(s`i)ϕ`i (12)

with s`i ∈ G1 (the closure of G1) and ϕ`i ∈ Lq(G1). The Sobolev embedding
theorem guarantees that the point evaluations are well-defined. We assume
that there are constants c1, c2, c3 > 0 such that for all `

c12d1` ≤ n` ≤ c22d1` (13)

and, if Ir,q denotes the identical embedding of W r
q (G) into Lq(G1),

‖Ir,q − P` : W r
q (G1) → Lq(G1)‖ ≤ c32−r`. (14)

Such sequences can be constructed for many domains, e.g. by using tri-
angular, rectangular or isoparametric finite elements of suitable order. We
refer to Ciarlet (1978) for details. For the unit cube and arbitrary r, piece-
wise multivariate Lagrange interpolation will do (among many others), as
described in Heinrich (1998a) and Heinrich and Sindambiwe (1999). For
polyhedral domains and r = 2 piecewise linear interpolation on successively
finer triangulations is a standard approach, the s`i being the vertices of the
triangles and the ϕ`i being the corresponding hat functions.

The restriction to point evaluations of f in (12) was just made for nota-
tional simplicity. One could also admit values of derivatives (Dαf)(s) with
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|α| < r/d1 − 1/q. Now the multilevel method of dependent test fixes an m
and approximates u according to (5) by

ζ =
m∑

`=1

 n∑̀
i=1

 |G2|
N`

N∑̀
j=1

f(s`i, ξ`j)

ϕ`i

−
n`−1∑
i=1

 |G2|
N`

N∑̀
j=1

f(s`−1,i, ξ`j)

ϕ`−1,i

 (15)

where the N` (` = 1, . . . ,m) are positive integers, ξ`j (` = 1, . . . ,m, j =
1, . . ., N`) are independent realizations of the uniformly distributed on G2

random variable ξ, and for ` = 1 we set n0 = 0, so in this case the second
term is zero. Next we provide a bound for the stochastic part of the error
of the multilevel method.

Proposition 4 Let 1 < q < ∞, p = min(2, q) and let (P`)∞`=1 satisfy (13)
and (14). Then there is a constant c > 0 such that for all f ∈ W r,0

q (G1×G2)
with ‖f‖

W r,0
q

≤ 1, for all m ∈ IN and N` ∈ IN (` = 1, . . . ,m) the multilevel
estimate ζ defined above satisfies.

(IE‖Pmu− ζ‖p
Lq(G1))

1/p ≤ c

(
m∑

`=1

N1−p
` 2−rp`

)1/p

. (16)

Proof. From Lemma 3 we get η ∈ Lq(X) ⊆ Lp(X) and

(IE‖u− η‖p
X)1/p ≤ ‖u‖X + (IE‖η‖p

X)1/p

= ‖IEη‖X + (IE‖η‖p
X)1/p

≤ 2(IE‖η‖q
X)1/q ≤ 2‖f‖

W r,0
q

≤ 2.

Moreover, by (14)

‖P` − P`−1 : X → Y ‖ ≤ c2−r`.

Finally, since Lq(G1) is of type p, all of its subspaces have a type p constant
not exceeding that of Lq(G1). Now Corollary 2 yields the result.

Remark. For the one level method (2) we obtain under the assumptions
of Proposition 4 with P = Pk for some k ≥ 1,

(IE‖Pu− θ‖p
Lq(G1))

1/p ≤ cN1/p−1. (17)
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For q = 2 (= p) this is well-known (see, e.g.,Voytishek, 1996).

In the following we shall choose the N` and balance deterministic and
stochastic error in such a way that we obtain minimal error at fixed com-
putational cost. In the theorem below ‘cost of computing ξ’ means the
total number of arithmetic operations, random number calls and function
evaluations required for the computation of the coefficients of all ϕ`i in (15).

Theorem 5 Let 1 < q < ∞, p = min(2, q) and let (P`)∞`=1 satisfy (13) and
(14). Then there exist constants c1, c2 > 0 such that for each integer M > 1
there is a choice of parameters m, (N`)m

`=1 such that the cost of computing
ζ is bounded by c1M and for each f ∈ W r,0

q (G1 ×G2) with ‖f‖
W r,0

q
≤ 1 the

p-th expected norm error (with respect to the norm of Lq(G1)) satisfies

ep(ζ) ≤ c2M
−r/d1 if r/d1 < 1− 1/p,

ep(ζ) ≤ c2M
1/p−1 log M if r/d1 = 1− 1/p,

ep(ζ) ≤ c2M
1/p−1 if r/d1 > 1− 1/p.

Proof. Throughout the proof and in the sequel the same symbol c, c1, or
c2 is used for possibly different positive constants, not depending on m,M
and f . The cost of computing ζ is obviously bounded by

c
m∑

`=1

2d1`N`. (18)

The line of the subsequent proof is the following. For the moment we fix m
to be any positive integer with

2d1(m−1) ≤ M. (19)

First we choose the N` for this fixed m and estimate the stochastic part of
the error. Later on we select the final m so that deterministic and stochastic
part of the error are in balance.
So let

N` =
⌈
2−(r+d1/p)`−((1−1/p)d1−r)mM

⌉
(20)

if r/d1 < 1− 1/p,

N` =
⌈
m−12−d1`M

⌉
(21)

if r/d1 = 1− 1/p, and

N` =
⌈
2−(r+d1/p)`M

⌉
(22)
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if r/d1 > 1− 1/p. Although this choice looks complicated, it has an obvious
source — this is (up to constants) what we get when minimizing the bound
from Proposition 4,

m∑
`=1

N1−p
` 2−rp`

(the variance, for p = 2), subject to the condition
m∑

`=1

2d1`N` ≤ M

(the cost). Since this aspect is not relevant for the proof, we omit the
standard calculation. It is readily checked that from (19) and the choices
(20), (21) or (22) it follows that

m∑
`=1

2d1`N` ≤ cM.

The deterministic part of the error (see (6)) satisfies, by (14) and (11),

‖u− Pmu‖Lq(G1) ≤ c2−rm‖u‖W r
q (G1) ≤ c2−rm. (23)

Next we compute the bounds on the stochastic part of the error in Propo-
sition 4. First we treat the case r/d1 < 1− 1/p. We have(

m∑
`=1

N1−p
` 2−rp`

)1/p

≤ cM1/p−12((1−1/p)d1−r)m, (24)

which is a consequence of (20) and the following calculation of exponents

(1− p)[−(r + d1/p)`− ((1− 1/p)d1 − r)m]− rp`

= ((p− 1)(r + d1/p)− rp)` + (p− 1)((1− 1/p)d1 − r)m
= ((1− 1/p)d1 − r)` + (p− 1)((1− 1/p)d1 − r)m
= p((1− 1/p)d1 − r)m + ((1− 1/p)d1 − r)(`−m).

Now we choose m in such a way that

c12−rm ≤ M1/p−12((1−1/p)d1−r)m ≤ c22−rm, (25)

which means that, up to constants, we equalize the bounds for deterministic
and stochastic part of the error, that is, the right hand sides of (23) and
(24). Clearly, (25) is equivalent to

c12d1m ≤ M ≤ c22d1m
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(different constants!), and it suffices to take m to be the largest integer
satisfying

2d1(m−1) ≤ M.

(23), (24), (25) together with (16) and (6) yield

ep(ζ) ≤ cM−r/d1 .

For r/d1 = 1− 1/p we use (21) and argue similarly:

(1− p)(−d1`)− rp` = p((1− 1/p)d1 − r)` = 0

and hence (
m∑

`=1

N1−p
` 2−rp`

)1/p

≤ cM1/p−1m.

We choose m in such a way that

c12−rm ≤ M1/p−1m ≤ c22−rm.

This is equivalent to

c1m
1/(1−1/p)2d1m ≤ M ≤ c2m

1/(1−1/p)2d1m,

and we let m be the largest integer satisfying

m1/(1−1/p)2d1(m−1) ≤ M.

We obtain

ep(ζ) ≤ cM1/p−1 log M.

Finally, for r/d1 > 1− 1/p we have

(1− p)(−(r + d1/p)`)− rp` = ((1− 1/p)d1 − r)`

and hence (
m∑

`=1

N1−p
` 2−rp`

)1/p

≤ cM1/p−1.

Here we choose m so that

c12−rm ≤ M1/p−1 ≤ c22−rm,
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or equivalently

c12r(1−1/p)−1m ≤ M ≤ c22r(1−1/p)−1m,

and we let m be the largest integer with

2r(1−1/p)−1(m−1) ≤ M.

This yields

ep(ζ) ≤ cM1/p−1

and proves the theorem.

Remark. As already mentioned, by ‘computation of ζ’ we meant the com-
putation of coefficients of the functions ϕ`i in (15). Having accomplished
this, it is often possible to combine these functions in a computationally
favorable way. Usually, the spaces span{ϕ`i : i = 1, . . . , n`} are nested,
and one can decompose ϕ`i successively into combinations of ϕ`+1,i until
level m is reached. For standard choices of approximation (as e.g. finite
elements, piecewise Lagrange polynomials, piecewise linear functions, men-
tioned above) such a decomposition can be achieved in cnm ≤ cM opera-
tions.

Now assume this is done, as well, and we want to compute ζ(s) for many
s ∈ G1 (e.g., to produce a graph of the approximating function). For each s,
this can be carried out in ≤ c operations, provided the functions ϕm,i can be
computed in ≤ c operations and the supports of these functions are almost
disjoint, which means that

sup
m

max
i
|{j : supp (ϕm,i) ∩ supp (ϕm,j) 6= ∅| < ∞.

Again, many known approximation scales, including the above mentioned
examples, possess this property.

Let us finally consider the one-level method and make comparisons. The
sum of deterministic and stochastic error (see (17)) amounts to

c(2−rk + N1/p−1),

while the cost M is of the order 2d1kN . Equalizing both terms above, we
see that at cost M we can reach an error

cM
1/p−1

1+(1−1/p)d1/r . (26)
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This is certainly larger than

Mmax(1/p−1,−rd1),

which we get (up to the log term) from Theorem 5. The saving by the
multilevel method can be seen better if we compare the cost of reaching an
error ε > 0. For the one-level method the cost is

c

(
1
ε

)d1/r+(1−1/p)−1

,

while for the multilevel method (up to log’s)

c

(
1
ε

)max(d1/r,(1−1/p)−1)

.

The results of Theorem 5 are optimal in a very general sense: No ran-
domized algorithm of cost M can do better (except for a constant factor
independent of M or, perhaps, a log-term in the case r/d1 = 1 − 1/p).
We cannot give the required formal framework for such statements here
and refer instead to the literature on information-based complexity theory
(see Traub, Wasilkowski, and Woźniakowski, 1988, Novak, 1988, Heinrich,
1994, Heinrich and Sindambiwe, 1999). Nevertheless, a few words on these
lower bounds seem appropriate. First of all, we now restrict ourselves to
the model case G1 = [0, 1]d1 , G2 = [0, 1]d2 . For the problem of parametric
integration of functions from the class W r,0

q (G1 ×G2) lower bounds are, in
fact, easily derived from known results (quite in contrast to the situation of
Cr(G1 × G2) studied in Heinrich and Sindambiwe, 1999). Indeed, by con-
sidering the subclass of W r,0

q (G1 × G2) of functions depending only on the
second component, i.e. f(s, t) ≡ g(t), we see that the problem is no easier
than stochastic integration of Lq(G2) functions. For this, the lower bound
M1/p−1 with p = min(2, q) is known, see Novak (1988, 2.2.9, Proposition 1,
and references). Similarly, the subclass of all functions in W r,0

q (G1 × G2)
depending only on the first component f(s, t) ≡ g(s), can be identified with
W r

q (G1), hence the problem is no easier than approximation of functions of
W r

q (G1) in Lq(G1), for which the known lower bound for stochastic methods
is M−r/d1 , see Heinrich (1994, Thm. 6.1 and references). Thus

Mmax(1/p−1,−r/d1) (27)

is a lower bound, which shows that Theorem 5 yields, in fact, the optimal
rate and hence the minimal Monte Carlo error in the sense of information-
based complexity theory (up to a possible log factor in the case r/d1 =
1− 1/p).
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When comparing the one- and the multilevel method, it seemed that we
compared only upper bounds. Such a discussion would be meaningless since
it does not exclude the existence of better estimates for any of the methods
under comparison. In our case, however, this is not so. Looking again at
functions depending only on the first or the second variable, it is easy to
check directly that the one level method cannot be better than

c
(
2−rk + N1/p−1

)
,

and hence, the rate (26) is sharp. Let us finally mention that the lower
bound (27) also holds for q = p = 1, in which case it turns into a positive
constant. This shows that no method can have a nontrivial convergence rate
for q = 1.

References

1. Adams, R. A. (1975). Sobolev Spaces, New York: Academic Press.

2. Ciarlet, P. G. (1978). The Finite Element Method for Elliptic Prob-
lems, Amsterdam: North-Holland.

3. Ermakov, S. M. and Mikhailov, G. A. (1982). Statistical Modelling,
Moscow: Nauka (in Russian).

4. Frolov, A. S. and Chentsov, N. N. (1962). On the calculation of certain
integrals dependent on a parameter by the Monte Carlo method, Zh.
Vychisl. Mat. Mat. Fiz., 2, 714 – 717 (in Russian).

5. Heinrich, S. (1994). Random approximation in numerical analysis, In:
Bierstedt, K. D., Pietsch, A., Ruess, W. M. and Vogt, D., editors,
Functional Analysis, pp. 123 – 171, New York, Basel, Hong Kong:
Marcel Dekker.

6. Heinrich, S. (1998a). Monte Carlo complexity of global solution of
integral equations, J. Complexity, 14, 151 – 175.

7. Heinrich, S. (1998b). A multilevel version of the method of dependent
tests, In: Ermakov, S. M., Kashtanov, Y. N. and Melas, V. B., editors,
Proceedings of the 3rd St. Petersburg Workshop on Simulation (collec-
tion of extended abstracts), pp. 31 – 35, St. Petersburg: St. Petersburg
University Press.

15



8. Heinrich, S. (1998c). Wavelet Monte Carlo methods for the global
solution of integral equations, In: Niederreiter, H. and Spanier, J.,
editors, Proceedings of the Third International Conference on Monte
Carlo and Quasi-Monte Carlo Methods, Claremont, 1998 (submitted).

9. Heinrich, S. and Sindambiwe, E. (1999). Monte Carlo complexity of
parametric integration, J. Complexity, (to appear).

10. Ledoux, M. and Talagrand, M. (1991). Probability in Banach Spaces,
Berlin, Heidelberg, New York: Springer.

11. Mikhailov, G. A. (1991). Minimization of Computational Costs of
Non-Analogue Monte Carlo Methods, Singapore: World Scientific.

12. Novak, E. (1988). Deterministic and Stochastic Error Bounds in Nu-
merical Analysis, Lecture Notes in Mathematics 1349. Berlin, Heidel-
berg, New York: Springer.

13. Pietsch, A. (1987). Eigenvalues and s-numbers, Leipzig: Geest and
Portig, and Cambridge: Cambridge University Press.

14. Prigarin, S. M. (1995). Convergence and optimization of functional
estimates in statistical modelling in Sobolev’s Hilbert spaces, Russian
J. Numer. Anal. Math. Modelling, 10, 325 – 346.

15. Sobol, I. M. (1962). The use of ω2-distribution for error estimation
in the calculation of integrals by the Monte Carlo method, U.S.S.R.
Comput. Math. and Math. Phys., 2, 717 – 723.

16. Sobol, I. M. (1973). Computational Monte Carlo Methods, Moscow:
Nauka (in Russian).

17. Traub, J. F., Wasilkowski, G. W. and Woźniakowski, H. (1988). In-
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