
On the power of restricted Monte Carlo algorithms

Stefan Heinrich
Department of Computer Science

University of Kaiserslautern
D-67653 Kaiserslautern, Germany

March 10, 2019

Abstract

We introduce a general notion of restricted Monte Carlo algorithms that generalizes
previous notions in two ways: it includes full adaptivity and general (i.e. not only bit) re-
strictions. We show that for each such restricted setting there is a computational problem
that can be solved in the general randomized setting but not under the restriction.

1 Introduction

Restricted Monte Carlo algorithms were considered in [11, 12, 16, 9, 13, 2, 17, 3, 4] (in the present
paper the terms ’randomized’ and ’Monte Carlo’ will be used synonymously). Restriction
usually means that the algorithm has access only to random bits or to random variables with
finite range. In a number of numerical problems the admission of randomized algorithms brings
considerable gains in terms of the convergence rate, e.g., in high dimensional integration, see
[3, 5, 6, 12, 15] for this and other problems. So it is certainly of theoretical interest to understand
how much randomness is really needed. Looking at algorithms that use random bits is an
obvious way to quantify randomness.

Most of the papers on restricted randomized algorithms consider the non-adaptive case.
Only [4] includes adaptivity, but considers a class of algorithms where each information call is
tied to one random bit call. Since for a number of important problems essentially fewer random
elements are needed than function values [9, 13, 2, 17], a general notion of adaptive restricted
randomized algorithms is of interest.

Here we give such a general definition, which extends the previous notions in two ways:
Firstly, we include full adaptivity, that is, the question whether to call a function value or
a random element is decided solely on the basis of the outcome of the computation carried
out so far. Secondly, we do not restrict the consideration to random bits, but include models
in which the algorithms have access to an arbitrary, but fixed set of random variables, for
example, uniform distributions on [0, 1]. This general definition was inspired by the approach
to stochastic problems from [7, 8].

A first (simple, but technically somewhat involved) step to fit this notion into the existing
IBC framework is to represent each restricted randomized algorithm as a general randomized
algorithm of suitable cardinality. Secondly, and this is the main topic of the present paper, we
study the question of the power of restricted as compared to general randomized algorithms.
It became clear from the previous work that there are problems which can be solved by general

1

2

Monte Carlo but not by Monte Carlo algorithms that use only random bits or random variables
with finite range (see [16], Th. 3.1, or example 14 in [4], the latter credited to E. Novak).

The question arises whether there are such problems for randomized algorithms with access
to uniform distributions on [0, 1], or with access to an even more general, but still restricted set
of random variables. We settle this question by showing that for each restriction model there is
a problem which cannot be solved in this restricted model, but can be solved (in one step) by
a general randomized algorithm. Our examples are based on cardinal number considerations
and on probability measures on suitably large sets. This can be viewed as a generalization of
the above-mentioned examples.

Let us finally mention that recently a very practical aspect came up, which motivates the
consideration of restricted Monte Carlo algorithms. The usual sequences of ’random numbers’
on a computer are generated in a deterministic way, using number theoretic methods, thus
they are not random at all, just have appropriate statistical properties. With the appearance
of quantum random generators the use of truly random bits became realistic, see, e.g., [14]
and references therein. Of course, now the minimal number of random bits is also of practical
interest.

2 Restricted randomized algorithms in a general setting

We work in the framework of information-based complexity theory (IBC) [12, 15]. First we
recall the notions of deterministic and randomized algorithms in the IBC approach from [5, 6],
see also [7, 8]. An abstract numerical problem P is given as

P = (F,G, S,K,Λ). (1)

Here F is a non-empty set, G a Banach space and S is a mapping F → G. The operator S is
called the solution operator, it sends the input f ∈ F of our problem to the exact solution S(f).
Moreover, Λ is a nonempty set of mappings from F to K, the set of information functionals,
where K is any nonempty set - the set of values of information functionals.

For illustration, let us consider an example (which will be used later on). Let (Q,F , µ) be
a probability space and let L2(Q,F , µ) denote the set of all F -to-Borel measurable, µ-square
integrable functions f : Q→ R. We set

F = BL2(Q,F ,µ) = {f ∈ L2(Q,F , µ) : ‖f‖L2(Q,F ,µ) ≤ 1}, G = R, (2)

S = IQ,µ : F → R, IQ,µ(f) =

∫
Q

f(x)dµ(x) (f ∈ F), (3)

K = R, Λ = {δx : x ∈ Q}, δx(f) := f(x) (f ∈ F). (4)

Thus, we want to compute (approximately) the integral of functions from the unit ball of
L2(Q,F , µ). The set of available information functionals consists of function evaluations at
arbitrary points of Q.

The basic IBC approach to a general notion of an algorithm is the following. The algorithm
starts with evaluating an information functional L1 ∈ Λ at input f ∈ F , that is L1(f) ∈ K.
Next a termination function τ1(L1(f)) is evaluated. If its value is 1, we stop the process of
gathering information. If the value is 0, we go on and choose, depending on L1(f), another
functional L2 ∈ Λ, and L2(f) is evaluated. The termination function τ2(L1(f), L2(f)) decides if
to stop or to continue. In the latter case, the choice of the next functional L3 ∈ Λ may depend

3

on L1(f) and L2(f), and so on. The procedure goes on until τn(L1(f), . . . , Ln(f)) = 1 for some
n, thus n values Lj(f) (j = 1, . . . , n) are obtained, the ’information’ about f . On the basis of
this information a final mapping ϕn : Kn → G is applied, representing the computations on
the information leading to the approximation A(f) to S(f) in G.

This is formalized as follows (including also the case of choosing no information functionals at
all, which we omitted in the above informal description). An (adaptive) deterministic algorithm
for P is a tuple A = ((Li)

∞
i=1, (τi)

∞
i=0, (ϕi)

∞
i=0) such that L1 ∈ Λ, τ0 ∈ {0, 1}, ϕ0 ∈ G, and for

i ∈ N
Li+1 : Ki → Λ, τi : Ki → {0, 1}, ϕi : Ki → G (5)

are arbitrary mappings, where Ki denotes the i-th Cartesian power of K. Given an input
f ∈ F , we define (λi)

∞
i=1 with λi ∈ Λ as follows:

λ1 = L1, λi = Li(λ1(f), . . . , λi−1(f)) (i ≥ 2). (6)

Define card(A, f), the cardinality of A at input f , to be 0 if τ0 = 1. If τ0 = 0, let card(A, f)
be the first integer n ≥ 1 with τn(λ1(f), . . . , λn(f)) = 1 if there is such an n. If τ0 = 0 and no
such n ∈ N exists, put card(A, f) = +∞. We define the output A(f) of algorithm A at input
f as

A(f) =

{
ϕ0 if card(A, f) ∈ {0,∞}
ϕn(λ1(f), . . . , λn(f)) if 1 ≤ card(A, f) = n <∞.

(7)

The cardinality of A is defined as

card(A,F) = sup
f∈F

card(A, f).

Given n ∈ N0, we define A det
n (P) as the set of deterministic algorithms A for P with card(A) ≤

n, the error of A in approximating S as

e(S,A, F,G) = sup
f∈F
‖S(f)− A(f)‖G,

and for n ∈ N0 the deterministic n-th minimal error of S as

edet
n (S, F,G) = inf

A∈A det
n (P)

e(S,A, F,G). (8)

In the case of the example (2)–(4) above a deterministic algorithm calls function values
λ1(f) = f(x1), . . . , λn(f) = f(xn), where the sample points xi ∈ Q can be chosen adaptively,
depending on the so far computed information, and also the termination number n may be
adaptive in this sense. The cardinality card(A, f) is the total number of function values n
called at input f . Finally, the mapping ϕn is applied to produce the output of the algorithm,
the approximation ϕn(f(x1), . . . , f(xn)) to the integral IQ,µ(f).

An (unrestricted) randomized algorithm for P is a tuple A = ((Ω,Σ,P), (Aω)ω∈Ω), where
(Ω,Σ,P) is a probability space and for each ω ∈ Ω, Aω is a deterministic algorithm for P.
Let n ∈ N0. Then A ran

n (P) stands for the class of randomized algorithms A for P with the
following properties: For each f ∈ F the mapping (ω)→ card(Aω, f) is Σ-measurable,

E card(Aω, f) ≤ n,

4

and the mapping ω → Aω(f) is Σ-to-Borel measurable and P-almost surely separably valued,
i.e., there is a separable subspace Gf of G such that P{ω : Aω(f) ∈ Gf} = 1. We define the
cardinality of A ∈ A ran

n (P) as

card(A,F) = sup
f∈F

E card(Aω, f),

the error as
e(S,A, F,G) = sup

f∈F
E ‖S(f)− Aω(f)‖G,

and the randomized n-th minimal error of S as

eran
n (S, F,G) = inf

A∈A ran
n (P)

e(S,A, F,G).

Considering trivial one-point probability spaces Ω = {ω} immediately yields

eran
n (S, F,G) ≤ edet

n (S, F,G). (9)

A classical example of an unrestricted randomized algorithm is the standard Monte Carlo
method for integration (2)–(4) with n ∈ N samples. Here we take a sufficiently large probability
space, e.g.,

(Ω,Σ,P) = (Q,F , µ)n,

a sequence (ξi)
n
i=1 of independent, uniformly distributed on Q random variables over (Ω,Σ,P),

and put An = ((Ω,Σ,P), (An,ω)ω∈Ω), where

An,ω(f) =
1

n

n∑
i=1

f(ξi(ω)). (10)

To view this algorithm in the formal context of (5), fix n ∈ N and ω ∈ Ω. Then we have
An,ω = ((Li)

∞
i=1, (τi)

∞
i=0, (ϕi)

∞
i=0) with

Li ≡ δξi(ω) (i = 1, . . . , n) (11)

τi ≡ 0 (0 ≤ i < n), τn ≡ 1 (12)

ϕn(a1, . . . , an) =
1

n

n∑
i=1

ai (ai ∈ R), (13)

while all other algorithm components can be chosen arbitrarily – they do not contribute to the
output An,ω(f). It is well-known (see, e.g., [12], 2.1.3) that

e(IQ,µ, An, BL2(Q,F ,µ),R) = sup
f∈BL2(Q,F,µ)

E|IQ,µ(f)− An,ω(f)| ≤ n−1/2. (14)

Now we introduce the new notion of a restricted randomized algorithm for P. A probability
space with access restriction is a tuple

R =
(
(Ω,Σ,P), K ′,Λ′

)
, (15)

where (Ω,Σ,P) is a probability space, K ′ a non-empty set, and Λ′ a non-empty set of mappings
from Ω to K ′. With P = (F,G, S,K,Λ) as above we set

K̄ = K∪̇K ′, Λ̄ = Λ∪̇Λ′,

5

where ∪̇ denotes the disjoint union. For λ ∈ Λ̄ we define

λ(f, ω) =

{
λ(f) if λ ∈ Λ
λ(ω) if λ ∈ Λ′.

An R-restricted randomized algorithm for problem P is a tuple A = ((Li)
∞
i=1, (τi)

∞
i=0, (ϕi)

∞
i=0)

such that L1 ∈ Λ̄, τ0 ∈ {0, 1}, ϕ0 ∈ G, and for i ∈ N

Li+1 : K̄i → Λ̄, τi : K̄i → {0, 1}, ϕi : K̄i → G (16)

are any mappings. Given f ∈ F and ω ∈ Ω, we define (λi)
∞
i=1 with λi ∈ Λ̄ as follows:

λ1 = L1, λi = Li(λ1(f, ω), . . . , λi−1(f, ω)) (i ≥ 2). (17)

Define cardΛ̄(A, f, ω), cardΛ(A, f, ω), and cardΛ′(A, f, ω) all to be 0 if τ0 = 1. If τ0 = 0, let
cardΛ̄(A, f, ω) be the first integer n ≥ 1 with τn(λ1(f, ω), . . . , λn(f, ω)) = 1 if there is such an
n. If τ0 = 0 and no such n ∈ N exists, put cardΛ̄(A, f, ω) = +∞. Let

cardΛ(A, f, ω) = |{k ≤ cardΛ̄(A, f, ω) : λk ∈ Λ}|
cardΛ′(A, f, ω) = |{k ≤ cardΛ̄(A, f, ω) : λk ∈ Λ′}|.

Clearly, cardΛ̄(A, f, ω) = cardΛ(A, f, ω) + cardΛ′(A, f, ω). We define the output A(f, ω) of
algorithm A at input (f, ω) as

A(f, ω) =

{
ϕ0 if cardΛ̄(A, f, ω) ∈ {0,∞}
ϕn(λ1(f, ω), . . . , λn(f, ω)) if 1 ≤ cardΛ̄(A, f, ω) = n <∞.

(18)

Thus, a restricted randomized algorithm depends on randomness of (Ω,Σ,P), but in a
special way. Namely, ω ∈ Ω can only be accessed through the functionals λ(ω) for λ ∈ Λ′.
Intuitively, it seems to be clear that a restricted randomized algorithm is a special case of a
randomized algorithm. Formally, though, this has to be checked on the basis of the respective
definitions. Corollary 2.2 states that this is indeed the case.

Also note the similarities of the definition of a restricted randomized algorithm with the
notion of a deterministic algorithm for a stochastic problem from [7, 8].

Given n, k ∈ N0, we define A ran
n,k (P,R) as the set of those R-restricted randomized algo-

rithms for problem P with the following properties: For each f ∈ F the mappings

ω → cardΛ̄(A, f, ω), ω → cardΛ(A, f, ω), ω → cardΛ′(A, f, ω)

are Σ-measurable,
E cardΛ(A, f, ω) ≤ n, E cardΛ′(A, f, ω) ≤ k,

and the mapping
ω → A(f, ω) ∈ G

is Σ-to-Borel measurable and P-almost surely separably valued. The error of A ∈ A ran
n,k (P,R)

is defined as
e(S,A, F,G) = sup

f∈F
E ‖S(f)− A(f, ω)‖G.

The (n, k)-th minimal R-restricted randomized error of S is defined as

eran
n,k(S, F,G) = inf

A∈A ran
n,k (P,R)

e(S,A, F,G). (19)

6

For example, bit Monte Carlo algorithms fit the above definition with K ′ = {0, 1}, Λ′ = {ξi :
1 ≤ i < ∞}, with (ξi) being independent random variables on (Ω,Σ,P) with P({ξi = 0}) =
P({ξi = 1}) = 1/2. The restricted Monte Carlo algorithms considered by Novak in [11, 12]
correspond to arbitrary K ′ and Λ′ consisting of random variables on (Ω,Σ,P) with finite range
and rational distribution probabilities. Of particular interest, because most frequently used, is
the case where K ′ = [0, 1] and Λ′ = {ηi : 1 ≤ i < ∞}, with (ηi) being independent uniformly
distributed on [0, 1] random variables over (Ω,Σ,P).

Concerning example (2)–(4), one might ask if the same rate as in (14) could be obtained
by the help of a finite number of uniformly distributed on [0, 1] random variables (and maybe
suitable transformations). If Q is too large, this may not be the case. In fact, it can happen
that no rate whatsoever is possible. This statement is a special case of Theorem 3.1 below.

To a given R-restricted randomized algorithm A for P and ω ∈ Ω we can associate a
deterministic algorithm Aω for P. The following proposition is related to Lemma 3 in [7], with
a refined statement about the cardinality of the resulting algorithm Aω.

Proposition 2.1. Let A be an R-restricted randomized algorithm for P. Then for each ω ∈ Ω
there is a deterministic algorithm Aω for P such that for all f ∈ F

card(Aω, f) = cardΛ(A, f, ω) (20)

Aω(f) = A(f, ω). (21)

Proof. Let ν0 ∈ Λ be any element, let A = ((Li)
∞
i=1, (τi)

∞
i=0, (ϕi)

∞
i=0), and fix ω ∈ Ω. Our goal is

to define a suitable algorithm Aω = ((Li,ω)∞i=1, (τi,ω)∞i=0, (ϕi,ω)∞i=0).
We start with the following construction. Given an arbitrary sequence (yl)

∞
l=1 ∈ KN, we

define two sequences (λi)
∞
i=1 ∈ ΛN and (zi)

∞
i=1 ∈ KN inductively as follows. Let

λ1 = L1 (22)

z1 =

{
y1 if λ1 ∈ Λ
λ1(ω) if λ1 ∈ Λ′.

(23)

Now let i ≥ 1, assume that (λj)j≤i and (zj)j≤i have been defined, let

l = |{j ≤ i : λj ∈ Λ}|, (24)

and set

λi+1 = Li+1(z1, . . . , zi) (25)

zi+1 =

{
yl+1 if λi+1 ∈ Λ
λi+1(ω) if λi+1 ∈ Λ′.

(26)

Observe that, roughly speaking, (λi)
∞
i=1 is something like the sequence (17), just with ’input’

(yl)
∞
l=1 instead of f . It is convenient for us to set λ∞ = ν0. Let k0 = 0 and define for l ∈ N

kl = min{i ∈ N : i > kl−1, λi ∈ Λ}, (27)

with the understanding that min ∅ =∞. This defines the function

Ψ : KN → ΛN ×KN × (N0 ∪ {∞})N0 , Ψ
(
(yl)

∞
l=1

)
=
(
(λi)

∞
i=1, (zi)

∞
i=1, (kl)

∞
l=0

)
.

7

We note that for each l ∈ N0 the following holds. Let (ỹj)
∞
j=1 ∈ KN be such that (yj)j≤l = (ỹ)j≤l

and let
Ψ
(
(ỹl)

∞
l=1

)
=
(
(λ̃i)

∞
i=1, (z̃i)

∞
i=1, (k̃l)

∞
l=0

)
.

Then
(λj)j≤kl+1

= (λ̃j)j≤kl+1
, (zj)j<kl+1

= (z̃j)j<kl+1
, (kp)p≤l+1 = (k̃p)p≤l+1. (28)

Next we define ((Ll,ω)∞l=1, (τl,ω)∞l=0, (ϕl,ω)∞l=0) for finite strings (y1, . . . , yl) of the given se-
quence (yl)

∞
l=1. Let l ∈ N0 and set

Ll+1,ω(y1, . . . , yl) =

{
λkl+1

if kl+1 <∞
ν0 if kl+1 =∞ (29)

τl,ω(y1, . . . , yl) =

0 if kl+1 <∞ and τi(z1, . . . , zi) = 0
for all i with kl ≤ i < kl+1

1 if kl+1 <∞ and τi(z1, . . . , zi) = 1
for some i with kl ≤ i < kl+1

1 if kl+1 =∞

(30)

ϕl,ω(y1, . . . , yl) =

ϕkl(z1, . . . , zkl) if kl+1 <∞ and τi(z1, . . . , zi) = 0
for all i with kl ≤ i < kl+1

ϕi(z1, . . . , zi) if i is the smallest idex with kl ≤ i < kl+1

and τi(z1, . . . , zi) = 1

ϕ0 if kl+1 =∞ and τi(z1, . . . , zi) = 0
for all i with kl ≤ i <∞.

(31)

Since we defined these functions of finite strings by the help of an infinite string, correctness has
to be checked in the sense that for each l ∈ N and each sequence (ỹj)

∞
j=1 ⊂ K with yj = ỹj for

all j ≤ l the respective values of Ll+1,ω(y1, . . . , yl), τl,ω(y1, . . . , yl), and ϕl,ω(y1, . . . , yl) coincide.
But this follows readily from (28). This completes the definition of algorithm Aω.

Now we show (20) and (21). Let f ∈ F and define according to (17)

λ∗1 = L1, λ∗i = Li(λ
∗
1(f, ω), . . . , λ∗i−1(f, ω)) (i ≥ 2). (32)

Furthermore, put k∗0 = 0 and set for l ∈ N

k∗l = min{i ∈ N : i > k∗l−1, λ
∗
i ∈ Λ} (33)

yl =

{
λ∗k∗l (f) if k∗l <∞
ν0(f) if k∗l =∞. (34)

Define according to (22)–(27)

Ψ
(
(yl)

∞
l=1

)
=
(
(λi)

∞
i=1, (zi)

∞
i=1, (kl)

∞
l=0

)
.

We claim that (
(λi)

∞
i=1, (zi)

∞
i=1, (kl)

∞
l=0

)
=
(
(λ∗i)

∞
i=1, (λ

∗
i (f, ω))∞i=1, (k

∗
l)
∞
l=0

)
. (35)

To prove the claim, we show by induction that for all i ∈ N

λj = λ∗j , zj = λ∗j(f, ω) (j ≤ i), (36)

kp = k∗p for all p ≤ |{j ≤ i : λj ∈ Λ}|. (37)

8

For i = 1 we have k0 = k∗0 and by (22) and (32),

λ1 = L1 = λ∗1.

If λ1 ∈ Λ, then by (27) and (33), k1 = 1 = k∗1, |{j ≤ 1 : λj ∈ Λ}| = 1, and by (23) and (34)

z1 = y1 = λ∗1(f) = λ∗1(f, ω).

If λ1 ∈ Λ′, then |{j ≤ 1 : λj ∈ Λ}| = 0 and

z1 = λ1(ω) = λ∗1(ω) = λ∗1(f, ω).

This shows (36) and (37) for i = 1.
Now let i ≥ 1 and assume (36) and (37) hold for i. From (25) and (32) we obtain

λi+1 = Li+1(z1, . . . , zi) = Li+1(λ∗1(f, ω), . . . , λ∗i (f, ω)) = λ∗i+1.

Define l = |{j ≤ i : λj ∈ Λ}|. Then kl = k∗l and kl+1 ≥ i+ 1. If λi+1 ∈ Λ, we have by (27) and
(33), kl+1 = i+ 1 = k∗l+1, |{j ≤ i+ 1 : λj ∈ Λ}| = l + 1, and by (26),

zi+1 = yl+1 = λ∗k∗l+1
(f) = λ∗i+1(f) = λ∗i+1(f, ω).

If λi+1 ∈ Λ′, then |{j ≤ i+ 1 : λj ∈ Λ}| = l and

zi+1 = λi+1(ω) = λ∗i+1(ω) = λ∗i+1(f, ω).

This completes the induction step, showing (36) and (37) for all i, which, in turn, implies (35).
Next we observe that for l ∈ N0(

Ll+1,ω(y1, . . . , yl)
)
(f) = yl+1. (38)

Indeed, if kl+1 <∞, then by (29) and (34)(
Ll+1,ω(y1, . . . , yl)

)
(f) = λkl+1

(f) = yl+1.

Similarly, if kl+1 =∞, we get(
Ll+1,ω(y1, . . . , yl)

)
(f) = ν0(f) = yl+1.

To complete the proof of the proposition, we consider three cases. First we assume that
cardΛ̄(A, f, ω) =∞. This means

τi(z1, . . . , zi) = 0 (i ∈ N0), A(f, ω) = ϕ0.

Assume furthermore kl < ∞ for all l ∈ N, thus cardΛ(A, f, ω) = ∞. It follows from (30) and
(31) that

τl,ω(y1, . . . , yl) = 0 (l ∈ N0), ϕ0,ω = ϕ0,

hence card(Aω, f) =∞ and
Aω(f) = ϕ0,ω = ϕ0 = A(f, ω).

Next assume that there is an l1 ∈ N0 such that kl1 <∞ and kl1+1 =∞, hence cardΛ(A, f, ω) =
l1, so (30) and (31) give

τl,ω(y1, . . . , yl) = 0 (l < l1), τl1,ω(y1, . . . , yl1) = 1, ϕl1,ω(y1, . . . , yl1) = ϕ0,

9

thus card(Aω, f) = l1 and

Aω(f) = ϕl1,ω(y1, . . . , yl1) = ϕ0 = A(f, ω).

Finally, we assume cardΛ̄(A, f, ω) = n <∞. This means

τi(z1, . . . , zi) = 0 (i ∈ N0, i < n), τn(z1, . . . , zn) = 1, A(f, ω) = ϕn(z1, . . . , zn).

There is a unique l1 ∈ N0 such that kl1 ≤ n < kl1+1, thus cardΛ(A, f, ω) = l1. By (30) and (31)

τl,ω(y1, . . . , yl) = 0 (l < l1), τl1,ω(y1, . . . , yl1) = 1, ϕl1,ω(y1, . . . , yl1) = ϕn(z1, . . . , zn),

consequently, card(Aω, f) = l1 and

Aω(f) = ϕl1,ω(y1, . . . , yl1) = ϕn(z1, . . . , zn) = A(f, ω).

This proves (20) and (21).

Corollary 2.2. For each R-restricted randomized algorithm A for P there exists a randomized
algorithm Ã = (Aω)ω∈Ω for P such that (20) and (21) hold. Moreover, if k, n ∈ N0 and
A ∈ A ran

n,k (P,R), then Ã ∈ A ran
n (P). Hence

eran
n (S, F,G) ≤ eran

n,k(S, F,G). (39)

Proof. This is a direct consequence of Proposition 2.1. If A ∈ A ran
n,k (P,R), then the required

measurability properties of Ã follow from those of A and (20)–(21). Furthermore,

card(Ã) = sup
f∈F

E card(Aω, f) = sup
f∈F

E cardΛ(A, f, ω) ≤ n.

3 The power of restricted randomized algorithms

In this section we show the following

Theorem 3.1. For each probability space with access restriction

R =
(
(Ω,Σ,P), K ′,Λ′

)
, (40)

see (15), there is a problem P = (F,G, S,K,Λ) such that

eran
1 (S, F,G) = 0, (41)

while
eran
n,k(S, F,G) = 1 for all n, k ∈ N0. (42)

For Monte Carlo algorithms that use only random bits or random variables with finite range
this result is due to Traub and Woźniakowski [16], Th. 3.1, and Novak, see [3], Example 14.

10

Proof. Let |Ω| be the cardinality of Ω, let ℵ = max(|Ω|, |N|) and let ℵ1 be any cardinal number
ℵ1 > ℵ. By Cantor’s theorem, one could take, e.g., ℵ1 = 2ℵ, see [10], Th. 6. We construct a
probability space (Q,F , µ) as follows. (For the case ℵ = |N| of this construction, see, e.g., [1],
p. 29–30, exercise 2.12 (d).) Let Q be any set with |Q| = ℵ1. Define

F0 = {B ⊆ Q : |B| ≤ ℵ}, F1 = {B ⊆ Q : |Q \B| ≤ ℵ}, F = F0 ∪F1,

and put for B ∈ F

µ(B) =

{
0 if B ∈ F0

1 if B ∈ F1.

Since the union of countably many sets Bi ⊆ Q with |Bi| ≤ ℵ satisfies | ∪i∈N Bi| ≤ ℵ ([10],
section 6, relations 6.1 and 6.4), it follows that F is a σ-algebra and µ is a (countably additive)
probability measure on (Q,F). The structure of the space L2(Q,F , µ) is simple: Let f : Q→
R be F -to-Borel measurable, thus

Q(f, a) := {x ∈ Q : f(x) ≤ a} ∈ F (a ∈ R).

Observe that since ⋂
a∈Q

Q(f, a) = ∅,
⋃
a∈Q

Q(f, a) = Q,

with Q the set of rationals, it follows that

a1 = inf{a ∈ R : Q(f, a) ∈ F1} ∈ R

and
Q(f, a1) =

⋂
a∈Q, a>a1

Q(f, a) ∈ F1.

For all a > a1 we have Q(f, a) \Q(f, a1) ∈ F0, thus

{x ∈ Q : f(x) 6= a} =
⋃

a∈Q,a<a1

Q(f, a) ∪
⋃

a∈Q,a>a1

(Q(f, a) \Q(f, a1)) ∈ F0.

Thus, f is constant except for a set of cardinality ≤ ℵ, that is, of µ-measure zero. Since each
such function is obviously µ-square integrable, L2(Q,F , µ) consists of all these functions. Let
us mention in passing that the respective space L2(Q,F , µ) of equivalence classes of functions
equal up to a set of µ-measure zero is one-dimensional and consists of equivalence classes of
constant functions.

We let P = (BL2(Q,F ,µ),R, IQ,µ,R,Λ) be defined by (2)–(4), with (Q,F , µ) as above. Let
A1 = ((Q,F , µ), (A1,x)x∈Q) be the classical Monte Carlo method (10) with one sample, which
is an unrestricted randomized algorithm, see (11)–(13). Obviously, card(A1, BL2(Q,F ,µ)) = 1
and

A1,x(f) = f(x) (x ∈ Q, f ∈ F),

hence for each f ∈ F the mapping x→ A1,x(f) = f(x) is F -to-Borel measurable. Moreover,

µ

{
x ∈ Q : A1,x(f) =

∫
Q

f(y)dµ(y)

}
= 1,

11

which means

e(IQ,µ, A,BL2(Q,F ,µ),R) = sup
f∈BL2(Q,F,µ)

∫
Q

|IQ,µ(f)− A1,x(f)|dµ(x) = 0,

proving (41).
Now let n, k ∈ N0 and let A ∈ A ran

n,k (P,R). By Proposition 2.1 for each ω ∈ Ω there is a
deterministic algorithm Aω = ((Li,ω)∞i=1, (τi,ω)∞i=0, (ϕi,ω)∞i=0) for P so that

Aω(f) = A(f, ω). (43)

Consider the zero function f0(x) = 0 (x ∈ Q). For ω ∈ Ω let, according to (6) and (7),

δt1,ω = L1,ω, δti,ω = Li,ω(f0(t1,ω), . . . , f0(ti−1,ω)) = Li,ω(0, . . . , 0) (i ≥ 2), (44)

thus

card(Aω, f0) = min{i ∈ N0 : τi,ω(0, . . . , 0) = 1} (45)

Aω(f0) =

{
ϕ0 if card(Aω, f0) ∈ {0,∞}
ϕn(0, . . . , 0) if 1 ≤ card(Aω, f0) = n <∞.

(46)

Let
B0 = {ti,ω : i ∈ N, ω ∈ Ω}. (47)

Then
|B0| ≤ |N| × |Ω| ≤ |N| × ℵ = ℵ,

hence B0 ∈ F0. Define fj ∈ BL2(Q,F ,µ) for j ∈ {1, 2} by

fj(x) =

{
0 if x ∈ B0

(−1)j if x ∈ Q \B0.
(48)

With (6) and (7) we obtain

δt1,ω,j = L1,ω, δti,ω,j = Li,ω(fj(t1,ω,j), . . . , fj(ti−1,ω,j)) (i ≥ 2), (49)

and

card(Aω, fj) = min{i ∈ N0 : τi,ω(fj(t1,ω,j), . . . , fj(ti,ω,j)) = 1} (50)

Aω(fj) =

{
ϕ0 if card(Aω, fj) ∈ {0,∞}
ϕn(fj(t1,ω,j), . . . , fj(tn,ω,j)) if 1 ≤ card(Aω, fj) = n <∞.

(51)

Using (45)–(51), it is readily checked by induction that for all i ∈ N, ω ∈ Ω, and j ∈ {1, 2} we
have ti,ω = ti,ω,j, therefore

fj(ti,ω,j) = 0, card(Aω, fj) = card(Aω, f0), Aω(fj) = Aω(f0).

12

Consequently,

e(IQ,µ, A,BL2(Q,F ,µ),R)

= sup
f∈BL2(Q,F,µ)

∫
Ω

|IQ,µ(f)− Aω(f)|dP(ω) = max
j=1,2

∫
Ω

|IQ,µ(fj)− Aω(fj)|dP(ω)

≥ 1

2

∑
j=1,2

∫
Ω

|IQ,µ(fj)− Aω(fj)|dP(ω) =
1

2

∑
j=1,2

∫
Ω

|IQ,µ(fj)− Aω(f0)|dP(ω)

≥ 1

2

∫
Ω

|IQ,µ(f1)− IQ,µ(f2)|dP(ω) = 1.

This shows (42).

Acknowledgment: This paper is partly based on research carried out while the author
was guest of the International Mathematical Research Institute MATRIX, Melbourne, during
the program ’On the frontiers of high dimensional computation’. The author is also grateful
to Thomas Müller-Gronbach and Klaus Ritter for a discussion on the topic of Theorem 3.1, to
Pawel Przyby lowicz for pointing out reference [1], and to the referees, whose suggestions helped
to improve the presentation.

References

[1] P. Billingsley, Probability and Measure, Wiley Series in Probability and Mathematical
Statistics, John Wiley & Sons, Inc., New York, 1986.

[2] W. Gao, P. Ye, and H. Wang, Optimal error bound of restricted Monte Carlo integration
on anisotropic Sobolev classes, Progr. Natur. Sci. (English Ed.) 16 (2006), 588–593.

[3] M. B. Giles, M. Hefter, L. Mayer, and K. Ritter, Random bit quadrature and approxima-
tion of distributions on Hilbert spaces, Found. Comput. Math., 2018. doi: 10.1007/s10208-
018-9382-3.

[4] M. B. Giles, M. Hefter, L. Mayer, and K. Ritter, Random bit multi-
level algorithms for stochastic differential equations, J. Complexity, in press,
https://doi.org/10.1016/j.jco.2019.01.002, see also arXiv:1808.10623.

[5] S. Heinrich, Monte Carlo approximation of weakly singular integral operators, J. Com-
plexity 22 (2006), 192–219.

[6] S. Heinrich, The randomized information complexity of elliptic PDE, J. Complexity 22
(2006), 220–249.

[7] S. Heinrich, Lower complexity bounds for parametric stochastic Itô integration, in: Monte
Carlo and Quasi-Monte Carlo Methods 2016 (A. B. Owen, P. W. Glynn, eds.), Springer
Proceedings in Mathematics & Statistics 241, Berlin, 2018, pp. 295–312.

[8] S. Heinrich, Complexity of stochastic integration in Sobolev classes, J. Math. Anal. Appl.
(2019), in press, https://doi.org/10.1016/j.jmaa.2018.12.077.

13

[9] S. Heinrich, E. Novak, and H. Pfeiffer. How many random bits do we need for Monte Carlo
integration? In: Monte Carlo and Quasi-Monte Carlo Methods 2002 (H. Niederreiter, ed.),
Springer-Verlag, Berlin, 2004, pp. 27–49.

[10] T. Jech, Set Theory, Academic Press, New York, 1977.

[11] E. Novak, Eingeschränkte Monte Carlo-Verfahren zur numerischen Integration, Proc. 4th
Pannonian Symp. on Math. Statist., Bad Tatzmannsdorf, Austria 1983, W. Grossmann et
al. eds., Reidel, 1985, pp. 269-282.

[12] E. Novak, Deterministic and Stochastic Error Bounds in Numerical Analysis, Lecture Notes
in Mathematics 1349, Springer-Verlag, 1988.

[13] E. Novak and H. Pfeiffer, Coin tossing algorithms for integral equations and tractability,
Monte Carlo Methods Appl. 10 (2004), 491–498.

[14] T. Symul, S. M. Assad, P. K. Lam, Real time demonstration of high bitrate quantum
random number generation with coherent laser light, Appl. Phys. Lett. 98, 231103 (2011).

[15] J. F. Traub, G. W. Wasilkowski, and H. Woźniakowski, Information-Based Complexity,
Academic Press, 1988.

[16] J. F. Traub and H. Woźniakowski, The Monte Carlo algorithm with a pseudorandom
generator, Math. Comp. 58 (1992), 323–339.

[17] P. Ye and X. Hu, Optimal integration error on anisotropic classes for restricted Monte
Carlo and quantum algorithms, J. Approx. Theory 150 (2008), 24–47.

