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Abstract

We study the randomized n-th minimal errors (and hence the complexity) of vec-
tor valued approximation. In a recent paper by the author [Randomized complexity of
parametric integration and the role of adaption I. Finite dimensional case (preprint)] a
long-standing problem of Information-Based Complexity was solved: Is there a constant
c > 0 such that for all linear problems P the randomized non-adaptive and adaptive n-th
minimal errors can deviate at most by a factor of c? That is, does the following hold for
all linear P and n ∈ N

eran−non
n (P) ≤ ceran

n (P) ?

The analysis of vector-valued mean computation showed that the answer is negative.
More precisely, there are instances of this problem where the gap between non-adaptive
and adaptive randomized minimal errors can be (up to log factors) of the order n1/8. This
raises the question about the maximal possible deviation. In this paper we show that for
certain instances of vector valued approximation the gap is n1/2 (again, up to log factors).

1 Introduction

Let N,N1, N2 ∈ N and 1 ≤ p, q, u, v ≤ ∞. We define the space LNp as the set of all functions
f : Z[1, N ] := {1, 2, . . . , N} → K with the norm

‖f‖LN
p

=

(
1

N

N∑
i=1

|f(i)|p
)1/p

(p <∞), ‖f‖LN
∞

= max
1≤i≤N

|f(i)|.

and the space LN1
p

(
LN2
u

)
as the set of all functions f : Z[1, N1]× Z[1, N2]→ K with the norm

‖f‖
L
N1
p

(
L
N2
u

) =
∥∥∥(‖fi‖LN2

u

)N1

i=1

∥∥∥
L
N1
p

with fi = (f(i, j))N2
j=1 being the rows of the matrix (f(i, j)). In the present paper we study

the complexity of approximation in the randomized setting. More precisely, we determine the
order of the randomized n-th minimal errors of

JN1,N2 : LN1
p

(
LN2
u

)
→ LN1

q

(
LN2
v

)
, JN1,N2f = f. (1)

The input set is the unit ball of LN1
p

(
LN2
u

)
, the error is measured in the norm of LN1

q

(
LN2
v

)
and

information is standard (values of f).
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It is well-known since the 80ies that for linear problems adaptive and non-adaptive n-
th minimal errors can deviate at most by a factor of 2, thus for any linear problem P =
(F,G, S,K,Λ) and any n ∈ N

edet−non
n (S, F,G) ≤ 2edet

n (S, F,G), (2)

see Gal and Micchelli [1], Traub and Woźniakowski [12]. The randomized analogue of this prob-
lem is as follows: Is there a constant c > 0 such that for all linear problems P = (F,G, S,K,Λ)
and all n ∈ N

eran−non
n (S, F,G) ≤ ceran

n (S, F,G) ?

See the open problem on p. 213 of [9], and Problem 20 on p. 146 of [10]. This problem was
solved recently by the author in [7], where it was shown that for some instances of vector-valued
mean computation the gap between non-adaptive and adaptive randomized n-th minimal errors
can be (up to log factors) of order n1/8. This raises the question about the maximal possible
deviation. In this paper we study the randomized complexity of vector valued approximation
and show that for certain instances of the gap is n1/2 (again, up to log factors), see Corollary
1.

2 Preliminaries

Throughout this paper log means log2. We denote N = {1, 2, . . . } and N0 = N ∪ {0}. The
symbol K stands for the scalar field, which is either R or C. We often use the same symbol
c, c1, c2, . . . for possibly different constants, even if they appear in a sequence of relations.
However, some constants are supposed to have the same meaning throughout a proof – these
are denoted by symbols c(1), c(2), . . . . The unit ball of a normed space X is denoted by BX .

We work in the framework of IBC [8, 11], using specifically the general approach from [3, 4],
see also the extended introduction in [7]. We refer to these papers for notation and background.

An abstract numerical problem P is given as P = (F,G, S,K,Λ), where F is a non-empty
set, G a Banach space, and S is a mapping F → G. The operator S is called the solution
operator, it sends the input f ∈ F of our problem to the exact solution S(f). Moreover, Λ is
a nonempty set of mappings from F to K, the set of information functionals, where K is any
nonempty set – the set of values of information functionals.

A problem P is called linear, if K = K, F is a convex and balanced subset of a linear space
X over K, S is the restriction to F of a linear operator from X to G, and each λ ∈ Λ is the
restriction to F of a linear mapping from X to K.

In this paper we consider the linear problem

PN1,N2 =

(
B
L
N1
p

(
L
N2
u

), LN1
q (LN2

v ), JN1,N2 ,K,Λ
)
,

where Λ = {δij : 1 ≤ i ≤ N1, 1 ≤ j ≤ N2} with δij(f) = f(i, j).
A deterministic algorithm for P is a tuple A = ((Li)

∞
i=1, (τi)

∞
i=0, (ϕi)

∞
i=0) such that L1 ∈ Λ,

τ0 ∈ {0, 1}, ϕ0 ∈ G, and for i ∈ N, Li+1 : Ki → Λ, τi : Ki → {0, 1}, and ϕi : Ki → G are
arbitrary mappings, where Ki denotes the i-th Cartesian power of K. Given an input f ∈ F ,
we define (λi)

∞
i=1 with λi ∈ Λ as follows:

λ1 = L1, λi = Li(λ1(f), . . . , λi−1(f)) (i ≥ 2).
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Define card(A, f), the cardinality of A at input f , to be 0 if τ0 = 1. If τ0 = 0, let card(A, f)
be the first integer n ≥ 1 with τn(λ1(f), . . . , λn(f)) = 1 if there is such an n. If τ0 = 0 and no
such n ∈ N exists, put card(A, f) = +∞. We define the output A(f) of algorithm A at input
f as

A(f) =

{
ϕ0 if card(A, f) ∈ {0,∞}
ϕn(λ1(f), . . . , λn(f)) if 1 ≤ card(A, f) = n <∞.

(3)

The cardinality of A is defined as card(A,F ) = supf∈F card(A, f). Given n ∈ N0, we define
A det
n (P) as the set of deterministic algorithms A for P with card(A) ≤ n and the deterministic

n-th minimal error of S as

edet
n (S, F,G) = inf

A∈A det
n (P)

sup
f∈F
‖S(f)− A(f)‖G. (4)

A deterministic algorithm is called non-adaptive, if all Li and all τi are constant, in other
words, Li ∈ Λ, τi ∈ {0, 1}. The subset of non-adaptive algorithms in A det

n (P) is denoted by
A det−non
n (P) and the non-adaptive deterministic n-th minimal error edet−non

n (S, F,G) is defined
in analogy with (4).

A randomized algorithm for P is a tuple A = ((Ω,Σ,P), (Aω)ω∈Ω), where (Ω,Σ,P) is a
probability space and for each ω ∈ Ω, Aω is a deterministic algorithm for P . Let n ∈ N0. Then
A ran
n (P) stands for the class of randomized algorithms A for P with the following properties:

For each f ∈ F the mapping ω → card(Aω, f) is Σ-measurable, E card(Aω, f) ≤ n, and the
mapping ω → Aω(f) is Σ-to-Borel measurable and P-almost surely separably valued, i.e., there
is a separable subspace Gf of G such that P{ω : Aω(f) ∈ Gf} = 1. We define the cardinality
of A ∈ A ran

n (P) as card(A,F ) = supf∈F E card(Aω, f), and the randomized n-th minimal error
of S as

eran
n (S, F,G) = inf

A∈A ran
n (P)

sup
f∈F

E ‖S(f)− Aω(f)‖G.

We call a randomized algorithm ((Ω,Σ,P), (Aω)ω∈Ω) non-adaptive, if Aω is non-adaptive for
all ω ∈ Ω. Furthermore, A ran−non

n (P) is the subset of A ran
n (P) consisting of non-adaptive

algorithms, and eran−non
n (S, F,G) denotes the non-adaptive randomized n-th minimal error.

We also need the average case setting. For the purposes of this paper we consider it only
for measures which are supported by a finite subset of F . Then the underlying σ-algebra is
assumed to be 2F , therefore no measurability conditions have to be imposed on S and the
involved deterministic algorithms. So let µ be a probability measure on F with finite support,
let card(A, µ) =

∫
F

card(A, f)dµ(f), and define

eavg
n (S, µ,G) = inf

A

∫
F

‖S(f)− A(f)‖Gdµ(f),

where the infimum is taken over all deterministic algorithms with card(A, µ) ≤ n. Corre-
spondingly, eavg−non

n (S, µ,G) is defined. We use the following well-known results to prove lower
bounds.

Lemma 1. For every probability measure µ on F of finite support we have

eran
n (S, F ) ≥ 1

2
eavg

2n (S, µ), eran−non
n (S, F ) ≥ 1

2
eavg−non

2n (S, µ).

The types of lower bounds stated in the next lemma are well-known in IBC (see [8, 11]).
For the specific form presented here we refer, e.g., to [3], Lemma 6 for statement (i), and to [6],
Proposition 3.1 for (ii).
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Lemma 2. Let P = (F,G, S,K,Λ) be a linear problem, n̄ ∈ N, and suppose there are
(fi)

n̄
i=1 ⊆ F such that the sets {λ ∈ Λ : λ(fi) 6= 0} (i = 1, . . . , n̄) are mutually disjoint.

Then the following hold for all n ∈ N with 4n < n̄:
(i) If

∑n̄
i=1 αifi ∈ F for all sequences (αi)

n̄
i=1 ∈ {−1, 1}n̄ and µ is the distribution of∑n̄

i=1 εifi, where εi are independent Bernoulli random variables with P{εi = 1} = P{εi =
−1} = 1/2, then

eavg
n (S, µ) ≥ 1

2
min

{
E
∥∥∥∑
i∈I

εiSfi

∥∥∥
G

: I ⊆ {1, . . . , n̄}, |I| ≥ n̄− 2n

}
.

(ii) If αfi ∈ F for all 1 ≤ i ≤ n̄ and α ∈ {−1, 1}, and µ is the uniform distribution on the
set {αfi : 1 ≤ i ≤ n̄, α ∈ {−1, 1}}, then

eavg
n (S, µ) ≥ 1

2
min

1≤i≤n̄
‖Sfi‖G.

Finally, let θ be the mapping given by the median, that is, if z∗1 ≤ · · · ≤ z∗m is the non-
decreasing rearrangement of (z1, . . . , zm) ∈ Rm, then θ(z1, . . . , zm) stands for z∗(m+1)/2 if m is

odd and
z∗
m/2

+z∗
m/2+1

2
if m is even. The following is well-known, see, e.g, [2].

Lemma 3. Let ζ1, . . . , ζm be independent, identically distributed real-valued random variables
on a probability space (Ω,Σ,P), z ∈ R, ε > 0 , and assume that P{|z − ζ1| ≤ ε} ≥ 3/4. Then

P{|z − θ(ζ1, . . . , ζm)| ≤ ε} ≥ 1− e−m/8.

3 An adaptive algorithm for vector valued approxima-

tion

We refer to the definition of the embedding JN1,N2 given in (1). It is easily checked by Hölder’s
inequality that ∥∥JN1,N2

∥∥ = N
(1/p−1/q)+
1 N

(1/u−1/v)+
2 , (5)

with a+ = max(a, 0) for a ∈ R. We need the randomized norm estimation algorithm from [5].
Let (Q,Q, %) be a probability space and let 1 ≤ v < u ≤ ∞. For n ∈ N define A1

n = (A1
n,ω)ω∈Ω

by setting for ω ∈ Ω and f ∈ Lu(Q,Q, %)

A1
n,ω(f) =

(
1

n

n∑
i=1

|f(ξi(ω2))|v
)1/v

, (6)

where ξi are independent Q-valued random variables on a probability space (Ω,Σ,P) with
distribution %. The following is essentially Proposition 6.3 of [5], for a self-contained proof we
refer to [7].

Proposition 1. Let 1 ≤ v < u ≤ ∞. Then there is a constant c > 0 such that for all probability
spaces (Q,Q, %), f ∈ Lu(Q,Q, %), and n ∈ N

E
∣∣‖f‖Lv(Q,Q,%) − A1

n,ω(f)
∣∣ ≤ cnmax(1/u−1/v,−1/2)‖f‖Lu(Q,Q,%). (7)
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The algorithm for approximation of JN1,N2 will only be defined for the case that 1 ≤ p <
q ≤ ∞ and 1 ≤ v < u ≤ ∞ (it turns out that for the other cases the zero algorithm is of optimal
order). Define for m,n ∈ N, n < N1N2 an adaptive algorithm A2

n,m,ω. Let f ∈ LN1
p (LN2

u ) and

set fi = (f(i, j))N2
j=1. Let

{
ξjk : 1 ≤ j ≤

⌈
n
N1

⌉
, 1 ≤ k ≤ m

}
be independent random variables

on a probability space (Ω,Σ,P) uniformly distributed over {1, . . . , N2}.
We apply algorithm A1

n,ω, see (6), to estimate ‖fi‖LN2
v

by setting for ω ∈ Ω, 1 ≤ i ≤ N1,
1 ≤ k ≤ m

aik(ω) =

(⌈
n

N1

⌉−1 ∑
1≤j≤

⌈
n
N1

⌉ |fi(ξjk(ω))|v
)1/v

, ãi(ω) = θ
(
(aik(ω))mk=1

)
.

Let ãπ(1) ≥ · · · ≥ ãπ(N1) be a non-increasing rearrangement of (ãi), with π a permutation. Then
the output A2

n,m,ω(f) ∈ LN1
q (LN2

v ) of the algorithm is defined as

A2
n,m,ω(f) = b = (bi(ω))N1

i=1, bπ(i)(ω) =

{
fπ(i) if i ≤

⌈
n
N2

⌉
0 otherwise

(8)

(note that the assumption on n implies
⌈
n
N2

⌉
≤ N1). If 1

v
− 1

u
> 1

2
, we use an iterated version

(A3
n,m,ω)ω∈Ω, where (Ω,Σ,P) = (Ω1,Σ1,P1) × (Ω2,Σ2,P2) with (Ωι,Σι,Pι) (ι = 1, 2) being

probability spaces. We define

A3
n,m,ω(f) = A2

n,m,ω1
(f) + A2

n,m,ω2
(f − A2

n,m,ω1
(f)) (ω = (ω1, ω2)). (9)

The constants in the subsequent statements and proofs are independent of the parameters n,
N1,N2, and m. This is also made clear by the order of quantifiers in the respective statements.

Proposition 2. Let 1 ≤ p < q ≤ ∞, 1 ≤ v < u ≤ ∞, and 1 ≤ w < ∞. Then there exist
constants c1 > 1, c2 > 0 such that the following hold for all m,n,N1, N2 ∈ N with n < N1N2

and f ∈ LN1
p (LN2

u ):

card(A2
n,m,ω) ≤ (m+ 1)n+mN1 +N2, card(A3

n,m,ω) = 2 card(A2
n,m,ω). (10)

Furthermore, setting An,m,ω = A2
n,m,ω if 1

v
− 1

u
≤ 1

2
and An,m,ω = A3

n,m,ω if 1
v
− 1

u
> 1

2
, we have

for m ≥ c1 log(N1 +N2)(
E ‖f − An,m,ω(f)‖w

L
N1
q (L

N2
v )

)1/w

≤ c2N
1/p−1/q
1

(⌈
n

N1

⌉1/u−1/v

+

⌈
n

N2

⌉1/q−1/p
)
‖f‖

L
N1
p (L

N2
u )
. (11)

Proof. The total number of samples in A2
n,m,ω is

mN1

⌈
n

N1

⌉
+N2

⌈
n

N2

⌉
≤ mn+mN1 + n+N2,

which gives (10). For n < max(N1, N2) relation (11) follows from (5). Hence in the sequel
we assume n ≥ max(N1, N2). Fix f ∈ LN1

p (LN2
u ). First we consider the case 1

v
− 1

u
≤ 1

2
. By

Proposition 1, where here the respective constant is denoted by c(0),

E
∣∣∣‖fi‖LN2

v
− aik

∣∣∣ ≤ c(0)

(
n

N1

)1/u−1/v

‖fi‖LN2
u
, (12)
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and therefore,

P

{
ω ∈ Ω :

∣∣∣‖fi‖LN2
v
− aik(ω)

∣∣∣ ≤ 4c(0)

(
n

N1

)1/u−1/v

‖fi‖LN2
u

}
≥ 3

4
. (13)

Let c(1) = 8(w+1)
log e

> 1 (recall that log always means log2), then m ≥ c(1) log(N1 + N2) implies

e−m/8 ≤ (N1 +N2)−w−1. From (13) and Lemma 3 we conclude

P

{
ω ∈ Ω :

∣∣∣‖fi‖LN2
v
− ãi(ω)

∣∣∣ ≤ 4c(0)

(
n

N1

)1/u−1/v

‖fi‖LN2
u

}
≥ 1− (N1 +N2)−w−1.

Let

Ω0 =

{
ω ∈ Ω :

∣∣∣‖fi‖LN2
v
− ãi(ω)

∣∣∣ ≤ 4c(0)

(
n

N1

)1/u−1/v

‖fi‖LN2
u

(1 ≤ i ≤ N1)

}
, (14)

thus
P(Ω0) ≥ 1− (N1 +N2)−w. (15)

Fix ω ∈ Ω0. Then by (14) for all i

ãi(ω) ≤ c‖fi‖LN2
u
. (16)

Consequently, (
1

N1

N1∑
i=1

ãi(ω)p
)1/p

≤ c

(
1

N1

N1∑
i=1

‖fi‖p
L
N2
u

)1/p

= c‖f‖
L
N1
p (L

N2
u )
. (17)

Let M =
⌈
n
N2

⌉
. It follows that

c‖f‖
L
N1
p (L

N2
u )
≥
(

1

N1

M∑
i=1

ãpπ(i)

)1/p

≥
(
M

N1

)1/p

ãπ(M), (18)

thus for i > M

ãπ(i) ≤ ãπ(M) ≤ c

(
N1

M

)1/p

‖f‖
L
N1
p (L

N2
u )
≤ c

(
N1N2

n

)1/p

‖f‖
L
N1
p (L

N2
u )
. (19)

Furthermore, by (8), for i ≤M ∥∥fπ(i) − bπ(i)(ω)
∥∥
L
N2
v

= 0. (20)

Let

I(ω) :=

{
1 ≤ i ≤ N1 : ãπ(i)(ω) ≤

‖fπ(i)‖LN2
v

2

}
, (21)

hence we conclude from (8) and (14) for i > M, i ∈ I(ω)∥∥fπ(i) − bπ(i)(ω)
∥∥
L
N2
v

= ‖fπ(i)‖LN2
v
≤ 2
(
‖fπ(i)‖LN2

v
− ãπ(i)(ω)

)
≤ c

(
n

N1

)1/u−1/v

‖fπ(i)‖LN2
u
. (22)
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On the other hand, we have by (19) for i > M, i 6∈ I(ω)∥∥fπ(i) − bπ(i)(ω)
∥∥
L
N2
v

=
∥∥fπ(i)

∥∥
L
N2
v
< 2ãπ(i)(ω) = 2ãπ(i)(ω)p/qãπ(i)(ω)1−p/q

≤ cãπ(i)(ω)p/q
(
N1N2

n

)1/p−1/q

‖f‖1−p/q
L
N1
p (L

N2
u )

(23)

(with the convention 00 = 1). Combining (20), (22), and (23), we get for 1 ≤ i ≤ N1∥∥fi − bi(ω)
∥∥
L
N2
v
≤ c

(
n

N1

)1/u−1/v

‖fi‖LN2
u

+ cãi(ω)p/q
(
N1N2

n

)1/p−1/q

‖f‖1−p/q
L
N1
p (L

N2
u )
.

Together with (17) we obtain for ω ∈ Ω0,∥∥f − (bi(ω))N1
i=1

∥∥
L
N1
q (L

N2
v )

≤ c

(
n

N1

)1/u−1/v∥∥∥(‖fi‖LN2
u

)N1

i=1

∥∥∥
L
N1
q

+ c

(
N1N2

n

)1/p−1/q ∥∥∥(ãi(ω)p/q
)N1

i=1

∥∥∥
L
N1
q

‖f‖1−p/q
L
N1
p (L

N2
u )

≤ c

(
n

N1

)1/u−1/v

N
1/p−1/q
1

∥∥∥(‖fi‖LN2
u

)N1

i=1

∥∥∥
L
N1
p

+c

(
N1N2

n

)1/p−1/q
(

1

N1

N1∑
i=1

ãi(ω)p

)1/q

‖f‖1−p/q
L
N1
p (L

N2
u )

≤ cN
1/p−1/q
1

((
n

N1

)1/u−1/v

+

(
n

N2

)1/q−1/p
)
‖f‖

L
N1
p (L

N2
u )
. (24)

To estimate the error on Ω \ Ω0 we note that by (8) for all ω ∈ Ω, bi is either fi or zero.
Consequently ∥∥f − b(ω)

∥∥
L
N1
q (L

N2
v )
≤
∥∥f∥∥

L
N1
q (L

N2
v )
≤ N

1/p−1/q
1 ‖f‖

L
N1
p (L

N2
u )
, (25)

and therefore, using (15),(∫
Ω\Ω0

∥∥f − (bi(ω))N1
i=1

∥∥w
L
N1
q (L

N2
v )
dP(ω)

)1/w

≤ N
1/p−1/q
1 (N1 +N2)−1‖f‖

L
N1
p (L

N2
u )
≤ N

1/p−1/q
1

(
n

N1

)1/q−1/p

‖f‖
L
N1
p (L

N2
u )
,

the last relation being a consquence of n < N1N2. Together with (24) this shows (11) under
the assumption 1

v
− 1

u
≤ 1

2
.

Finally we consider the case 1
v
− 1

u
> 1

2
. We define q1, v1 by

1

q1

=
1

2

(
1

p
+

1

q

)
,

1

v1

=
1

2

(
1

u
+

1

v

)
, (26)

then 1 ≤ p < q1 < q, v < v1 < u, 1
v1
− 1

u
≤ 1

2
, and 1

v
− 1

v1
≤ 1

2
, so we conclude from the already

shown case of (11)(
E ω1‖f − A2

n,m,ω1
(f)‖w

L
N1
q1

(L
N2
v1

)

)1/w

≤ cN
1/p−1/q1
1

((
n

N1

)1/u−1/v1

+

(
n

N2

)1/q1−1/p
)
‖f‖

L
N1
p (L

N2
u )

(27)
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and, with g = f − A2
n,m,ω1

(f),(
E ω2‖g − A2

n,m,ω2
(g)‖w

L
N1
q (L

N2
v )

)1/w

≤ cN
1/q1−1/q
1

((
n

N1

)1/v1−1/v

+

(
n

N2

)1/q−1/q1
)
‖g‖

L
N1
q1

(L
N2
v1

)
. (28)

From (9), (27), and (28) we obtain(
E ω1E ω2‖f − A3

n,m,(ω1,ω2)(f)‖w
L
N1
q (L

N2
v )

)1/w

=
(
E ω1E ω2‖f − A2

n,m,ω1
(f)− A2

n,m,ω2
(f − A2

n,m,ω1
(f))‖w

L
N1
q (L

N2
v )

)1/w

≤ cN
1/q1−1/q
1

((
n

N1

)1/v1−1/v

+

(
n

N2

)1/q−1/q1
)(

E ω1‖f − A2
n,m,ω1

(f)‖w
L
N1
q1

(L
N2
v1

)

)1/w

≤ cN
1/q1−1/q
1

((
n

N1

)1/v1−1/v

+

(
n

N2

)1/q−1/q1
)

×N1/p−1/q1
1

((
n

N1

)1/u−1/v1

+

(
n

N2

)1/q1−1/p
)
‖f‖

L
N1
p (L

N2
u )

= cN
1/p−1/q
1

((
n

N1

) 1
2

(1/u−1/v)

+

(
n

N2

) 1
2

(1/q−1/p)
)2

‖f‖
L
N1
p (L

N2
u )

≤ cN
1/p−1/q
1

((
n

N1

)1/u−1/v

+

(
n

N2

)1/q−1/p
)
‖f‖

L
N1
p (L

N2
u )
. (29)

This gives (11) and concludes the proof.

4 Lower bounds and complexity

Proposition 3. Let 1 ≤ p, q, u, v ≤ ∞. Then there exist constants 0 < c0 < 1, c1 . . . c6 > 0
such that for all n,N1, N2 ∈ N, with n < c0N1N2 there exist probability measures µ

(i)
n,N1,N2

(1 ≤ i ≤ 6) with finite support in B
L
N1
p (L

N2
u )

such that

eavg
n (JN1,N2 , µ

(1)
n,N1,N2

, LN1
q (LN2

v )) ≥ c1N
1/p−1/q
1

⌈
n

N1

⌉1/u−1/v

(30)

eavg
n (JN1,N2 , µ

(2)
n,N1,N2

, LN1
q (LN2

v )) ≥ c2N
1/p−1/q
1

⌈
n

N2

⌉1/q−1/p

(31)

eavg
n (JN1,N2 , µ

(3)
n,N1,N2

, LN1
q (LN2

v )) ≥ c4N
1/p−1/q
1 N

1/u−1/v
2 (32)

eavg
n (JN1,N2 , µ

(4)
n,N1,N2

, LN1
q (LN2

v )) ≥ c3 (33)

eavg
n (JN1,N2 , µ

(5)
n,N1,N2

, LN1
q (LN2

v )) ≥ c5

⌈
n

N1

⌉1/u−1/v

(34)

eavg−non
n

(
JN1,N2 , µ

(6)
n,N1,N2

)
, LN1

q (LN2
v )) ≥ c6N

1/p−1/q
1 . (35)
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Proof. We set c0 = 1
21

and let n ∈ N be such that

1 ≤ n <
N1N2

21
. (36)

Define for L with 1 ≤ L ≤ N2 disjoint subsets of {1, . . . , N2} by setting

Dj =

{
(j − 1)

⌊
N2

L

⌋
+ 1, . . . , j

⌊
N2

L

⌋}
, (j = 1, . . . , L), (37)

then
N2

2L
<

⌊
N2

L

⌋
= |Dj| ≤

N2

L
. (38)

To show (30), we put

L =

⌊
4n

N1

⌋
+ 1, (39)

thus ⌈
4n

N1

⌉
< L ≤ 5

⌈
n

N1

⌉
. (40)

By (36), 4n
N1

< N2, which together with (39) gives L ≤ N2, as required above. We conclude
from (38) and (40)

N2

10

⌈
n

N1

⌉−1

< |Dj| ≤ N2

⌈
n

N1

⌉−1

. (41)

Let for 1 ≤ i ≤ N1 and 1 ≤ j ≤ L

ψij(s, t) =

{
N

1/p
1 N

1/u
2 |Dj|−1/u if s = i and t ∈ Dj,

0 otherwise,
(42)

and let µ
(1)
n,N1,N2

be the unifrom distribution on the set

{αψij : i = 1, . . . , N1, j = 1, . . . , L, α = ±1} ⊂ B
L
N1
p (L

N2
u ))

.

Recall that by (40), LN1 > 4n, so from Lemma 2(ii) and relation (41) we conclude

eavg
n (JN1,N2 , µ

(1)
n,N1,N2

, LN1
q (LN2

v )) ≥ 1

2

∥∥JN1,N2ψ1,1

∥∥
L
N1
q (L

N2
v )

=
1

2
N

1/p−1/q
1 N

1/u−1/v
2 |D1|1/v−1/u

≥ cN
1/p−1/q
1

⌈
n

N1

⌉1/u−1/v

,

thus (30).
To prove (31), we set

M =

⌊
4n

N2

⌋
+ 1, (43)

so similarly to the above, ⌈
4n

N2

⌉
< M ≤ 5

⌈
n

N2

⌉
(44)
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and M ≤ N1. Now define for 1 ≤ i ≤M and 1 ≤ j ≤ N2

ψij(s, t) =

{
N

1/p
1 M−1/p, if s = i and t = j

0 otherwise.
(45)

Let (εij)
M,N2

i=1,j=1 be independent symmetric Bernoulli random variables and let µ
(2)
n,N1,N2

be the

distribution of
∑M

i=1

∑N2

j=1 εijψij. Then µ
(2)
n,N1,N2

is concentrated on B
L
N1
p (L

N2
u )

. Since by (44),

MN2 > 4n, we can apply Lemma 2. So let K be any subset of {(i, j) : 1 ≤ i ≤M, 1 ≤ j ≤ N2}
with |K| ≥MN2 − 2n. Then

|K| ≥ 1

2
MN2. (46)

For 1 ≤ i ≤M let

Ki = {1 ≤ j ≤ N2 : (i, j) ∈ K}, I :=

{
1 ≤ i ≤M : |Ki| ≥

N2

4

}
. (47)

Then |I| ≥ M
4

and we get from (44) and (47)

E
∥∥∥∥ ∑

(i,j)∈K

εijJ
N1,N2ψij

∥∥∥∥
L
N1
q (L

N2
v )

≥ E
∥∥∥∥∑
i∈I

∑
j∈Ki

εijψij

∥∥∥∥
L
N1
q (L

N2
v )

≥ 4−1/vN
1/p
1 M−1/p|I|1/qN−1/q

1

≥ cN
1/p−1/q
1 M1/q−1/p ≥ cN

1/p−1/q
1

⌈
n

N2

⌉1/q−1/p

and from Lemma 2 (i)

eavg
n (JN1,N2 , µ

(2)
n,N1,N2

, LN1
q (LN2

v ))

≥ 1

2
min

|K|≥MN2−2n
E

∥∥∥∥∥ ∑
(i,j)∈K

εijJ
N1,N2ψij

∥∥∥∥∥
L
N1
q (L

N2
v )

≥ cN
1/p−1/q
1

⌈
n

N2

⌉1/q−1/p

,

thus (31).
We derive relation (32) directly from (30) and (33) from (31). Setting n1 = dc0N1N2e − 1

and recalling from (36) that 1 < c0N1N2, we get c0
2
N1N2 ≤ n1 < c0N1N2. Consequently,

c0

2
N1 ≤

⌈
n1

N2

⌉
< (c0 + 1)N1,

c0

2
N2 ≤

⌈
n1

N1

⌉
< (c0 + 1)N2. (48)

We set

µ
(3)
n,N1,N2

= µ
(1)
n1,N1,N2

, µ
(4)
n,N1,N2

= µ
(2)
n1,N1,N2

.

Furthermore, since n < c0N1N2 we have n ≤ n1, hence by monotonicity, (30), and (48)

eavg
n (JN1,N2 , µ

(3)
n,N1,N2

, LN1
q (LN2

v )) = eavg
n (JN1,N2 , µ

(1)
n1,N1,N2

, LN1
q (LN2

v ))

≥ eavg
n1

(JN1,N2 , µ
(1)
n1,N1,N2

, LN1
q (LN2

v )) ≥ cN
1/p−1/q
1

⌈
n1

N1

⌉1/u−1/v

≥ cN
1/p−1/q
1 N

1/u−1/v
2 ,
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thus (32). Similarly, from (31)

eavg
n (JN1,N2 , µ

(4)
n,N1,N2

, LN1
q (LN2

v )) = eavg
n (JN1,N2 , µ

(2)
n1,N1,N2

, LN1
q (LN2

v ))

≥ eavg
n1

(JN1,N2 , µ
(2)
n1,N1,N2

, LN1
q (LN2

v )) ≥ cN
1/p−1/q
1

⌈
n1

N2

⌉1/q−1/p

≥ c,

which is (33).
For the proof of inequalities (34) and (35) we can assume n ≥ N1, because for n < N1 the

already shown relation (33) implies (34), while (30) gives (35). We set

L = 4

⌈
4n

N1

⌉
+ 1, (49)

hence by (36)

L ≤ 16n

N1

+ 5 ≤ 21n

N1

≤ N2.

To prove (34), we use again the blocks Dj (j = 1, . . . , L) given by (37) and define ψj ∈ BL
N2
u

by

ψj(t) =

{
N

1/u
2 |Dj|−1/u if t ∈ Dj,

0 otherwise.
(50)

Let µ1 be the counting measure on {±ψj : 1 ≤ j ≤ L} ⊂ LN2
u . Then we set µ

(5)
n,N1,N2

= µN1
1 ,

the N1-th power of µ1, considered as a measure on LN1
p (LN2

u ). This measure has its support in
B
L
N1
p (L

N2
u )

, and with JN2 : LN2
u → LN2

v being the identical embedding, Corollary 2.4 of [7] gives

eavg
n (JN1,N2 , µ

(5)
n,N1,N2

, LN1
q (LN2

v )) ≥ 2−1−1/qeavg⌈
4n
N1

⌉(JN2 , µ1, L
N2
v ). (51)

By Lemma 2(ii) with n̄ = L, (38), and (49)

eavg⌈
4n
N1

⌉(JN2 , µ1, L
N2
v ) ≥ 1

2
‖JN2ψ1‖LN2

v
=

1

2
N

1/u−1/v
2 |Dj|1/v−1/u ≥ c

⌈
n

N1

⌉1/u−1/v

,

which together with (51) gives (34).
Finally we turn to (35), where we set

ψj = N
1/p
1 χDj

∈ LN2
u (j = 1, . . . , L), (52)

with Dj given by (37) and L by (49). Let (εj)
L
j=1 be independent symmetric Bernoulli random

variables and let µ1 be the distribution of
∑L

j=1 εjψj. We define a measure µ
(6)
n,N1,N2

on B
L
N1
p (L

N2
u )

as follows: Let Φk : LN2
u → LN1

p (LN2
u ) be the identical embedding onto the k-th component of

the space LN1
p (LN2

u ), that is, for g ∈ LN2
u , Φk(g) = f , with f(k, j) = g(j) and f(i, j) = 0 for

i 6= k. We define the measure µ
(6)
n,N1,N2

on LN1
p (LN2

u ) by setting for a set C ⊂ LN1
p (LN2

u )

µ
(6)
n,N1,N2

(C) = N−1
1

N1∑
i=1

µ1(Φ−1
i (C)), (53)
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thus by (52), µ
(6)
n,N1,N2

is of finite support in B
L
N1
p (L

N2
u )

. Now Corollary 2.6 of [7] yields

eavg−non
n (JN1,N2 , µ

(6)
n,N1,N2

, LN1
q (LN2

v )) ≥ 1

2
N
−1/q
1 eavg−non⌈

2n
N1

⌉ (JN2 , µ1, L
N2
v ). (54)

By Lemma 2(i), (38), (49), and (52)

eavg−non⌈
2n
N1

⌉ (JN2 , µ1, L
N2
v ) ≥ eavg⌈

2n
N1

⌉(JN2 , µ1, L
N2
v )

≥ 1

2
min

{
E
∥∥∥∑
i∈I

εiJ
N2ψi

∥∥∥
L
N2
v

: I ⊆ {1, . . . , L}, |I| ≥ L− 2

⌈
2n

N1

⌉}
≥ cN

1/p
1 .

Inserting this into (54) finally yields (35).

Theorem 1. Let 1 ≤ p, q, u, v ≤ ∞. Then there exists constants 0 < c0 < 1, c1, . . . , c6 > 0,
such that for all n,N1, N2 ∈ N with n < c0N1N2 the following hold: If p ≥ q or u ≤ v, then

c1N
(1/p−1/q)+
1 N

(1/u−1/v)+
2 ≤ eran

n

(
JN1,N2 , B

L
N1
p (L

N2
u )
, LN1

q (LN2
v )
)

≤ eran−non
n

(
JN1,N2 , B

L
N1
p (L

N2
u )
, LN1

q (LN2
v )
)
≤ c2N

(1/p−1/q)+
1 N

(1/u−1/v)+
2 . (55)

If p < q and u > v, then

c3N
1/p−1/q
1

(⌈
n

N1

⌉1/u−1/v

+

⌈
n

N2

⌉1/q−1/p
)
≤ eran

n

(
JN1,N2 , B

L
N1
p (L

N2
u )
, LN1

q (LN2
v )
)

≤ c4N
1/p−1/q
1

(⌈
n

N1 log(N1 +N2)

⌉1/u−1/v

+

⌈
n

N2 log(N1 +N2)

⌉1/q−1/p
)

(56)

and

c5N
1/p−1/q
1 ≤ eran−non

n

(
JN1,N2 , B

L
N1
p (L

N2
u )
, LN1

q (LN2
v )
)
≤ c6N

1/p−1/q
1 . (57)

Proof. The upper bounds in (55) and (57) are a consequence of (5), just using the zero algo-
rithm. If n < 6(N1+N2) dc(1) log(N1 +N2)e, where c(1) > 1 is the constant c1 from Proposition
2, the upper bound of (56) follows from (5), as well. Now assume

n ≥ 6(N1 +N2) dc(1) log(N1 +N2)e (58)

and set
m = dc(1) log(N1 +N2)e , ñ =

⌊ n

6m

⌋
. (59)

We use Proposition 2 with ñ instead of n, so by (10) and (59)

card(A2
ñ,ω) ≤ (m+ 1)ñ+mN1 +N2 ≤ 2mñ+m(N1 +N2) ≤ 3mñ ≤ n

2
, (60)

consequently, card(A3
ñ,ω) ≤ 2 card(A2

ñ,ω) ≤ n and therefore

eran
n

(
JN1,N2 , B

L
N1
p (L

N2
u )
, LN1

q (LN2
v )
)
≤ cN

1/p−1/q
1

(⌈
ñ

N1

⌉1/u−1/v

+

⌈
ñ

N2

⌉1/q−1/p
)
. (61)
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Furthermore, we obtain from (58) and (59)⌈
ñ

Ni

⌉
≥ cn

Nim
≥ cn

Ni log(N1 +N2)
≥ c

⌈
n

Ni log(N1 +N2)

⌉
(i = 1, 2). (62)

Combining (61) and (62) proves the upper bound in (56).
Now we prove the lower bounds in (55)–(57). We use Lemma 1 and Proposition 3. We

assume n < 1
2
c(0)N1N2, where c(0) stands for the constant c0 from Proposition 3. We start

with (55) and assume first that p ≥ q and u ≤ v. Setting n1 =
⌈

1
2
c(0)N1N2

⌉
− 1, we have

n ≤ n1 and
1

4
c(0)N1N2 ≤ n1 <

1

2
c(0)N1N2,

therefore, by (34) and monotonicity of the n-th minimal errors

eran
n

(
JN1,N2 , B

L
N1
p (L

N2
u )
, LN1

q (LN2
v )
)
≥ eran

n1

(
JN1,N2 , B

L
N1
p (L

N2
u )
, LN1

q (LN2
v )
)

≥ 1

2
eavg

2n1
(JN1,N2 , µ

(5)
2n1,N1,N2

, LN1
q (LN2

v )) ≥ c

⌈
2n1

N1

⌉1/u−1/v

≥ cN
1/u−1/v
2 ,

which is the lower bound of (55) for the case (p ≥ q) ∧ (u ≤ v). If (p ≥ q) ∧ (u > v), the lower
estimate of relation (55) follows from (33), while if (p < q) ∧ (u ≤ v), it is a consequence of
(32). Relations (30) and (31) together give the lower bound in (56), and (35) implies the one
in (57).

With c0 from Theorem 1 and N1 = N2 =
⌊
c
−1/2
0 n1/2

⌋
+ 1, we obtain

Corollary 1. There are constants c1, c2 > 0 such that for each n ∈ N there exist N1, N2 ∈ N
such that

c1n
1/2(log(n+ 1))−1 ≤

eran−non
n (JN1,N2 , B

L
N1
1 (L

N2∞ )
, LN1
∞ (LN2

1 ))

eran
n (JN1,N2 , B

L
N1
1 (L

N2∞ )
, LN1∞ (LN2

1 ))
≤ c2n

1/2.

It is not known though if the exponent 1/2 is the largest possible among all linear problems.
More precisely, is sup Γ > 1/2, where

Γ =

{
γ > 0 : ∃c > 0∀n ∈ N∃ a linear problem Pn with

eran−non
n (Pn)

eran
n (Pn)

≥ cnγ
}

?
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