Pressemeldung

Wie Algen pinke Pigmente herstellen

Ein Enzym ist der Schlüssel zur Farbe bestimmter Algen. Und damit auch zu ihrer Fähigkeit zur Fotosynthese.

Aus ein- und demselben Vorläufermolekül können Algen verschiedenfarbige Pigmente herstellen – ganz nach Bedarf in ihrer Umgebung. Wie die Synthese des pinken Farbstoffs Phycoerythrobilin im Detail abläuft, konnte ein Team der Fakultät für Biologie und Biotechnologie der Ruhr-Universität Bochum (RUB) und der Technischen Universität Kaiserslautern zeigen. Die Forscherinnen und Forscher fanden heraus, dass ein Schlüsselenzym die Bindung eines Substrats nur in einer unerwarteten Orientierung zulässt und somit für die entsprechende Farbe sorgt. Das Forschungsteam berichtet im Journal of Biological Chemistry vom 20. September 2019. Die Ergebnisse wurden für das Titelbild der Zeitschrift ausgewählt.

„Wir arbeiten schon sehr viele Jahre an die Biosynthese dieser Farbstoff und haben die Enzyme gut biochemisch charakterisiert. Insgesamt haben wir mit den Kollegen aus Bochum mit dieser Struktur bereits die vierte gemeinsame Struktur dieser Enzymfamilie untersucht. Die jetzt gelöste Struktur war das letzte Puzzlestück, um strukturell die Biosynthese des pinkfarbenen Farbstoffes in Algen zu verstehen und wir gehen davon aus, dass es in Cyanobakterien genauso funktioniert“, so Prof. Dr. Nicole Frankenberg-Dinkel, die seitens der TU Kaiserslautern am Projekt mitarbeitete. 

Für das Farbspiel von Algen sind natürliche Pigmentmoleküle verantwortlich, die je nach Umgebung gezielt von den Organismen hergestellt werden. Erst mit ihrer Hilfe können die Algen Fotosynthese betreiben. Vor allem Cyanobakterien (früher Blaualgen genannt), Rotalgen und sogenannte Cryptophyten nutzen dazu Biline. Anders als der bekannte grüne Blattfarbstoff Chlorophyll sind Biline Pigmentmoleküle mit großer Farbvielfalt. Biliverdin entsteht durch enzymatisches Aufschneiden der Ringstuktur von Häm und dient als Vorläufer für alle weiteren Biline.

In den nächsten Schritten werden Elektronen und Protonen gezielt an verschiedenen Positionen der Zwischenprodukte angelagert. „Faszinierend dabei ist, dass strukturell sehr ähnliche Enzyme, so genannte Bilinreduktasen, verschiedenfarbige Pigmente generieren können“, so Johannes Sommerkamp aus der Arbeitsgruppe von Prof. Dr. Eckhard Hofmann an der RUB. „Noch verstehen wir nicht richtig, wie diese Kontrolle der chemischen Reaktionen erfolgt.“

Johannes Sommerkamp hat speziell die Synthese des pinkfarbenen Phycoerythrobilin untersucht. „Phycoerythrobilin wird in Algen normalerweise in zwei Schritten von zwei verwandten Enzymen synthetisiert. Die Struktur des Enzyms für den ersten Schritt konnten wir schon vor einigen Jahren aufklären, aber wir konnten damit nicht verstehen, warum das Enzym für den zweiten Schritt so spezifisch arbeitet“, so Eckhard Hofmann.

Dem Team rund um Johannes Sommerkamp gelang es jetzt, die dreidimensionale Raumstruktur des zweiten Enzyms aus der Cryptophyte Guillardia theta zu entschlüsseln. Er nutzte dafür die Röntgenstrukturanalyse, bei der zunächst Kristalle des Enzyms gezüchtet werden, um diese dann mit Röntgenstrahlung zu untersuchen. Auf Grundlage dieser Daten kann dann ein Modell des Enzyms mit atomarer Auflösung erstellt werden. Dabei fanden die Forscher eine unerwartete Orientierung des Vorläuferpigmentes in der Bindetasche, und eine katalytisch wichtige Aminosäure, die eine zentrale Rolle bei der Steuerung der Reaktivität einnimmt.

„Wenn wir uns jetzt die räumliche Struktur der Bindetasche ansehen, passt das Substrat nur in dieser Orientierung. Das legt dann auch fest, wie die Reaktion abläuft“, so Eckhard Hofmann.

Förderung

Die Arbeiten sind Teil eines von der Deutschen Forschungsgemeinschaft geförderten Gemeinschaftsprojekts mit Prof. Dr. Nicole Frankenberg-Dinkel von der Technischen Universität Kaiserslautern. Zusammen hatten die Gruppen auch schon ein Protein untersucht, dass die Reaktivität von beiden Enzymen in einem vereint.

Johannes Sommerkamp ist Mitglied in der DFG-Graduiertenschule GRK 2341 "Microbial substrate conversion (Micon)".

 

Originalveröffentlichung

Johannes A. Sommerkamp, Nicole Frankenberg-Dinkel, Eckhard Hofmann: Crystal structure of the first eukaryotic bilin reductase GtPEBB reveals a flipped binding mode of dihydrobiliverdin. In: Journal of Biological Chemistry, 2019, DOI: 10.1074/jbc.RA119.009306, http://www.jbc.org/content/early/2019/07/31/jbc.RA119.009306

Pressekontakt

Prof. Dr. Eckhard Hofmann
Röntgenstrukturanalyse an Proteinen
Fakultät für Biologie und Biotechnologie
Ruhr-Universität Bochum
Tel.: 0234 32 24463
E-Mail: eckhard.hofmann(at)rub.de

Prof. Dr. Nicole Frankenberg-Dinkel Technische Universität Kaiserslautern Fachbereich Biologie, Abteilung Mikrobiologie Tel.: 0631 205 2353 E-Mail: nfranken@bio.uni-kl.de

Die TU Kaiserslautern

Die TU Kaiserslautern ist die einzige technisch-naturwissenschaftlich ausgerichtete Universität in Rheinland-Pfalz. Zukunftsorientierte Studiengänge, eine praxisnahe Ausbildung und eine moderne Infrastruktur sind die Rahmenbedingungen, die Studierende an der Campus-Universität vorfinden. Die TU Kaiserslautern wurde beim bundesweiten Wettbewerb "Exzellente Lehre" mit dem Exzellenz-Preis für Studium und Lehre ausgezeichnet. Damit stellt die TU den hohen Stellenwert ihrer Studienangebote unter Beweis. Darüber hinaus profitieren die Studierenden und Wissenschaftler von den zahlreichen international renommierten Forschungseinrichtungen, die im Bereich der angewandten Forschung eng mit der TU Kaiserslautern kooperieren.

 

 

Pressekontakt

Katrin Müller
Leitung Universitätskommunikation

Tel.: +49(0)631/205-4367
Fax: +49(0)631/205-3658
Mail: katrin.mueller[at]verw.uni-kl.de
Web: www.uni-kl.de/pr-marketing

Zum Seitenanfang