Sonderforschungsbereich

SFB/TRR 173 Spin+X

Kaiserslautern - Mainz

Spin+X unterstützt ukrainische Forschung

Spin+X bietet Unterstützung für Wissenschaftlerinnen und Wissenschaftler aus der Ukraine, die direkt vom Krieg betroffen sind. Eine förderfähige Kandidatin oder Kandidat sollte einen Beitrag vorschlagen, der für die im Rahmen von Spin+X durchgeführte Forschung relevant ist. Wenn Sie Spin+X Wissenschaft betreiben und an dieser Aufforderung interessiert sind, nehmen Sie bitte Kontakt zu uns auf und legen Sie dar, welche für Spin+X relevante Forschungsthemen Sie vorschlagen und welche Unterstützung Sie erhalten möchten. Darüber hinaus ermutigen wir insbesondere Studierende aus der Ukraine, die ein Master- oder Promotionsprogramm absolvieren, uns zu kontaktieren.

Spin+X - Der Spin in seiner kollektiven Umgebung

Der transregionale Sonderforschungsbereich 173 Spin+X erforscht Spineigenschaften aus verschiedenen Perspektiven und durch die Verbindung mehrerer wissenschaftlicher Disziplinen. Die Forschung umfasst das gesamte Spektrum der Spinforschung von den mikroskopischen Eigenschaften über emergente Spinphänomene bis hin zur Kopplung an die makroskopische Welt. Dies bildet eine neue Disziplin, die wir als Advanced Spin Engineering bezeichnen und die darauf abzielt, neue Funktionalitäten auf der Grundlage der Spinphysik zu schaffen. Spin+X baut auf einer hervorragenden Forschungsinfrastruktur in Physik und Chemie an RPTU und JGU sowie in den Ingenieurwissenschaften an der RPTU auf, die im Bereich der Spin-bezogenen Wissenschaft und Technologie an vorderster Front stehen.
 

Weiterlesen

Partner:
Neuigkeiten aus dem SFB/TRR 173

News

Physiker optimieren die Erzeugung spintronischer Terahertz-Wellen

Foto von Juniorprofessor Evangelos im Labor
Das Team um Juniorprofessor Dr. Evangelos Papaioannou hat die Methode zur effizienten Erzeugung von THz-Wellen weiterentwickelt. Foto: TUK/Thomas Koziel
Schematische Darstellung der neuen Technik
Die Abbildung zeigt, wie die Technik funktioniert: Die Laserpulse treffen auf die Nanostruktur, in der es zur Umwandlung von Spinstrom zu THz-Wellen kommt. Eine kleine Linse bündelt die Wellen.

Terahertz (THz)-Wellen liegen im elektromagnetischen Spektrum zwischen Mikrowellen und Infrarotstrahlung. Für das menschliche Auge sind sie nicht sichtbar. Da sie energiearm sind, sind sie für die Gesundheit unbedenklich. Heutzutage spielen sie unter anderem in der Medizin- und Kommunikationstechnik eine Rolle, aber auch bei der Materialprüfung. So kamen sie zum Beispiel zum Einsatz, um die Kunststoffisolierung am Space-Shuttle zu untersuchen. Allerdings bedarf es leistungsfähiger Strahlungsquellen, sogenannten Emittern, um die Wellen zu erzeugen. Dies ist meist mit hohem Energieaufwand und Kosten verbunden.

Ein sehr effizientes und gleichzeitig kostengünstigeres Verfahren haben nun Kaiserslauterer SPIN+X-Forscher entwickelt: Sie nutzen dabei einen sogenannten Spinstrom. Dieser ist analog zum elektrischen Strom, bei dem elektrische Ladungen, nämlich Elektronen, fließen. „Ein Spin bezeichnet den Eigendrehimpuls von Quantenteilchen wie zum Beispiel Elektronen“, sagt Juniorprofessor Dr. Evangelos Papaioannou, der am Lehrstuhl für Magnetismus bei Professor Dr. Burkard Hillebrands an der TUK im Fachbereich Physik forscht. „Er bildet die Grundlage für alle magnetischen Phänomene. Vereinfacht gesagt dreht sich ein Elektron wie ein Kreisel links- oder rechtsherum um seine Achse.“

Für die Technik hat das Team um Papaioannou eine spezielle Nanostruktur entwickelt. „Sie besteht aus einer Metall-Doppelschicht aus dem magnetischen Eisen und dem nichtmagnetischen Platin“, beschreibt der Physiker den Aufbau der Struktur. „Dabei handelt es sich um hauchdünne Schichten, die nur wenige Nanometer dick sind.“

Um die Terahertz-Wellen zu erzeugen, verwendet die Arbeitsgruppe um Juniorprofessor Papaioannou einen Femtosekundenlaser, der äußerst kurze Laserpulse aussendet. In der Folge passiert nun Folgendes: „Die Pulse treffen auf die Nanostruktur. Hier regen sie im Eisen die Elektronen an, wodurch ein Spinstrom entsteht“, so der Forscher. Dieser Strom fließt in die danebenliegende Platinschicht. Hier kommt es nun zu einem bestimmten physikalischen Phänomen, dem inversen Spin-Hall-Effekt. Für Platin ist dieser Effekt schon länger bekannt. Er entsteht aufgrund der atomaren Struktur des Metalls. „Die Atomkerne von Platin lenken Elektronen mit links- und rechtsdrehendem Spin in entgegengesetzte Richtungen ab, was zur Umwandlung des Spinstroms in einen ultraschnellen Ladungsstrom führt, der dann die Quelle der Terahertz-Wellen ist“, sagt Papaioannou.

Als Besonderheit des Versuchsaufbaus ist auf der Struktur eine kleine Linse aus Silizium angebracht. „Damit bündeln wir die Wellen“, so der Juniorprofessor weiter. Auf diese Weise könnten die Terahertz-Wellen bei künftigen Anwendungen einfach und effizient weitergeleitet werden.

In ihrer nun veröffentlichen Arbeit haben die Forscher unter anderem untersucht, wie die Schichtdicken und die Anordnung der Materialien am besten gestaltet sein müssen, um die THz-Wellen zu erzeugen. Das Forschungsgebiet der THz-Spintronik-Technik ist noch recht neu. Vor kurzem haben Berliner Forscherkollegen erstmals gezeigt, dass sich Terahertz-Wellen mittels Spinstrom erzeugen lassen. Die Studie der Kaiserslauterer Forscher zeigt nun, wie die Strahler so optimiert werden können, dass sie ihre maximale Effizienz erreichen können. Dies macht sie kostengünstiger und für verschiedene Anwendungsfelder interessant, beispielsweise für Sicherheitstechniken, Materialprüfung und Informationstechnologien, aber auch für die Grundlagenforschung.

Das Team um Papaioannou ist Teil des Landesforschungszentrums für Optik und Materialwissenschaften (OPTIMAS), welches vom Land Rheinland-Pfalz finanziert wird. An der Studie waren auch Professor Dr. René Beigang und Dr. Garik Torosyan vom Photonic Center Kaiserslautern beteiligt. Beide Forscher sind Experten auf dem Gebiet der Terahertz-Wellen.
Die Arbeit wurde von der Deutschen Forschungsgemeinschaft im Rahmen des Sonderforschungsbereichs „SPIN+X“ sowie der Carl-Zeiss-Stiftung unterstützt. Die Studie wurde in der renommierten Fachzeitschrift „Scientific Reports“ veröffentlicht: „Optimized Spintronic Terahertz Emitters Based on Epitaxial Grown Fe/Pt Layer Structures“ DOI: 10.1038/s41598-018-19432-9

Fragen beantwortet:
Juniorprof. Dr. Evangelos Papaioannou
Tel.: 0631 205-4099
E-Mail: papaio(at)rhrk.uni-kl.de

Foto von Juniorprofessor Evangelos im Labor
Das Team um Juniorprofessor Dr. Evangelos Papaioannou hat die Methode zur effizienten Erzeugung von THz-Wellen weiterentwickelt. Foto: TUK/Thomas Koziel
Schematische Darstellung der neuen Technik
Die Abbildung zeigt, wie die Technik funktioniert: Die Laserpulse treffen auf die Nanostruktur, in der es zur Umwandlung von Spinstrom zu THz-Wellen kommt. Eine kleine Linse bündelt die Wellen.
Personen
Forschung
Publikationen
Veranstaltungen
INF-Projekt
Outreach
Jobangebote